Robot Combat - Combat Robot Weaponry and Design

Combat Robot Weaponry and Design

An effective combat robot must have some method of damaging or controlling the actions of its opponent while at the same time protecting itself from aggression. The tactics employed by combat robot operators and the robot designs which support those tactics are numerous. Although some robots have multiple weapons, the more successful competitors concentrate on a single form of attack. This is a list of most of the basic types of weapons. Most robot weaponry falls into one of the following categories:

  • Rammer - Robots employing high-power drive trains and heavy armor are able to use their speed and maneuverability to crash into their opponent repeatedly with hope of damaging weapons and vital components. Their pushing power may also be used to shove their opponent into arena hazards. Rammers (AKA ‘Bricks’) typically have four or six wheels for traction and stability and are often designed to be fully operational when inverted. Robot Wars Series 6 champion Tornado and Series 7 Runner-up Storm II were effective rammers.
  • Wedge - Similar in concept to a rammer, the wedge uses a low-clearance inclined wedge or scoop to move in under an opponent and break its contact with the arena floor – decreasing its mobility and rendering it easy to push off into a wall or hazard. The wedge is also useful in deflecting attacks by other robots. Wedges are also used to lift an opponent up to make the attack of another weapon more effective. A small wedge may be attached to the rear of a robot with other weaponry for use as a ‘backup’ in case the main weapon fails. The 1995 US Robot Wars middleweight champion La Machine was an early and effective wedge design as was Robot Wars Series 1 champion, Roadblock (1997).
  • Spinner - Continuously rotating weapons are popular and varied. These use a dedicated motor to spin up a heavy bar, studded disc, or toothed cylinder (drum/eggbeater) and use it to strike the opponent with the kinetic energy stored in the rotating mass. The mass may spin on either a horizontal or vertical axis, although vertical spinners may have maneuverability problems due to the gyroscopic action of the weapon. The destructive potential of a well designed spinning weapon requires robust arena containment to prevent shrapnel being thrown into the audience. Three-time BattleBots middleweight champion Hazard was a horizontal bar spinner.
  • Full Body Spinner - Taking the concept of the spinner to the extreme, a full body spinner (AKA shell spinner or tuna can spinner) rotates the entire outer shell of the robot as a stored energy weapon. Other robot components (batteries, weapon motor casing) may be attached to the shell to increase the spinning mass while keeping the mass of the drive train to a minimum. An FBS robot takes several seconds to spin the heavy shell up to effective speed, and they must evade their opponent while waiting for that speed. The 1995 US Robot Wars heavyweight co-champion Blendo was the first effective full body spinner.
  • Thwackbot - A narrow, high-speed, two-wheel drive train attached to a long boom with an impact weapon on the end creates a robot that can spin in place at a high speed, swinging the weapon in a horizontal circle. The simplicity and durability of the design is appealing, but the robot cannot be made to move in a controlled manner while spinning without employing sophisticated electronics. The 1995 US Robot Wars lightweight champion Test Toaster 1 was a thwackbot, as were T-Wrex and Golddigger from the BattleBots series.
  • Torque Reaction - A variant on the thwackbot is the torque reaction hammer. These robots have two very large wheels with the small body of the robot hanging in between them. A long weapon boom has a vertically oriented hammer, pick, or axe on the end. On acceleration, the weapon boom swings upward and over to the rear of the robot to offset the motor torque. When the robot reverses direction, the weapon will swing forcibly back over the top and hopefully impact the opponent. These robots are simple and can put on a flashy, aggressive show, but their attack power is relatively small. BattleBots 2.0 middleweight champion Spaz was a torque reaction pickaxe robot.
  • Lifter - Using tactics similar to a wedge, the lifter uses a powered arm, prow, or platform to get underneath the opponent and lift it away from the arena surface to remove its maneuverability. The lifter may then push the other robot toward arena hazards or attempt to toss the opponent onto its back. The lifter is typically powered by either an electric or pneumatic actuator. Two-time US Robot wars and four-time BattleBots heavyweight champion Biohazard was an electric lifter.
  • Flipper - Although mechanically resembling a lifter, the flipper uses much higher levels of pneumatic power to fire the lifting arm explosively upward. An effective flipper can throw opponents end-over-end through the air causing damage from the landing impact or, at Robot Wars, toss it completely out of the arena. Flippers use a large volume of compressed gas and may have a limited number of effective attacks before their supply runs low. The two-time Robot Wars champion Chaos 2 and BattleBots super heavyweight champion Toro were flippers.
  • Clamper - Another lifter variant, the clamper adds an arm or claw that descends from above to secure the opposing robot in place on a lifting platform. The entire assembly then lifts and carries the opponent wherever the operator pleases. Two-time BattleBots super heavyweight champion Diesector was an electric clamper.
  • Dustpan - An uncommon variant on the clamper, the dustpan simplifies the design by replacing the lifting platform with a wide box open at the front and top. An opponent maneuvered into the box may then be restrained with an arm or claw from above. Some designs use only the box with no restraining claw.
  • Crusher - Related to the dustpan, the crusher uses a hydraulic cylinder attached to a sharp piercing arm to pin and slowly penetrate the usually weak top armor of the opponent. Enormous strength and careful engineering are required to build an effective crusher, which may be why there have been only two successful crushing combat robots: two-time Robot Wars world champion Razer and two-time Robot Wars Annihilator champion Kan-Opener.
  • Overhead Axe - Swinging a high-speed axe, spike, or hammer forcefully down onto your opponent offers another method of attacking the vulnerable top surface. The weapon is typically driven by a pneumatic actuator via a rack and pinion or direct mechanical linkage. The attack may damage the opposing robot directly, or may lodge in their robot and provide a handle for dragging them toward a hazard. BattleBots heavyweight runner-up and Robot Wars competitor Killerhurtz was armed with an overhead axe.
  • SRiMech - Some robot and weapon designs are not compatible with inverted operation. A Self Righting Mechanism is an active design element that returns an inverted robot to mobility in the upright state. The SRiMech is typically an electric or pneumatic arm or extension on the upper surface of the robot which pushes against the arena floor to roll or flip the robot upright. Some carefully designed flipping or lifting weapons can perform double-duty as SRiMechs. Even a vertical spinning weapon may be used as a crude self-righting device. Team Nightmare's lightweight vertical spinner Backlash was designed such that when flipped it would hit the ground with the spinning disc and kick back upright. The first successful unaided use of a SRiMech in competition was at the 1997 U.S. Robot Wars when the immobilized Vlad the Impaler used a dedicated pneumatic device to pop back upright in a match against Biohazard.

Read more about this topic:  Robot Combat

Famous quotes containing the words combat, robot and/or design:

    The combat ended for want of combatants.
    Pierre Corneille (1606–1684)

    The person who designed a robot that could act and think as well as your four-year-old would deserve a Nobel Prize. But there is no public recognition for bringing up several truly human beings.
    C. John Sommerville (20th century)

    If I commit suicide, it will not be to destroy myself but to put myself back together again. Suicide will be for me only one means of violently reconquering myself, of brutally invading my being, of anticipating the unpredictable approaches of God. By suicide, I reintroduce my design in nature, I shall for the first time give things the shape of my will.
    Antonin Artaud (1896–1948)