Ring Oscillator - Operation

Operation

To understand the operation of a ring oscillator, one must first understand gate delay. In a physical device, no gate can switch instantaneously; in a device fabricated with MOSFETs, for example, the gate capacitance must be charged before current can flow between the source and the drain. Thus, the output of every inverter of a ring oscillator changes a finite amount of time after the input has changed. From here, it can be easily seen that adding more inverters to the chain increases the total gate delay, reducing the frequency of oscillation.

The ring oscillator is a member of the class of time delay oscillators. A time-delay oscillator consists of an inverting amplifier with a delay element between the amplifier output and its input. The amplifier must have a gain of greater than 1.0 at the intended oscillation frequency. Consider the initial case where the amplifier input and output voltages are momentarily balanced at a stable point. A small amount of noise can cause the amplifier output to rise slightly. After passing through the time-delay element, this small output voltage change will be presented to the amplifier input. The amplifier has a negative gain of greater than 1, so the output will change in the direction opposite to this input voltage. It will change by an amount larger than the input value, for a gain of greater than 1. This amplified, reversed signal propagates from the output through the time-delay and back to the input, where it is amplified and inverted again. The result of this sequential loop is a square-wave signal at the amplifier output with the period of each half of the square wave equal to the time delay. The square wave will grow until the amplifier output voltage reaches its limits, where it will stabilize. A more exact analysis will show that the wave that grows from the initial noise may not be square as it grows, but it will become square as the amplifier reaches its output limits.

The ring oscillator is a distributed version of the delay oscillator. The ring oscillator uses an odd number of inverters to give the effect of a single inverting amplifier with a gain of greater than one. Rather than having a single delay element, each inverter contributes to the delay of the signal around the ring of inverters, hence the name ring oscillator. Adding pairs of inverters to the ring increases the total delay and thereby decreases the oscillator frequency. Changing the supply voltage changes the delay through each inverter, with higher voltages typically decreasing the delay and increasing the oscillator frequency. The method of frequency-stability and power consumption improving of the CMOS ring-oscillator is described in.

Read more about this topic:  Ring Oscillator

Famous quotes containing the word operation:

    An absolute can only be given in an intuition, while all the rest has to do with analysis. We call intuition here the sympathy by which one is transported into the interior of an object in order to coincide with what there is unique and consequently inexpressible in it. Analysis, on the contrary, is the operation which reduces the object to elements already known.
    Henri Bergson (1859–1941)

    Waiting for the race to become official, he began to feel as if he had as much effect on the final outcome of the operation as a single piece of a jumbo jigsaw puzzle has to its predetermined final design. Only the addition of the missing fragments of the puzzle would reveal if the picture was as he guessed it would be.
    Stanley Kubrick (b. 1928)

    It requires a surgical operation to get a joke well into a Scotch understanding. The only idea of wit, or rather that inferior variety of the electric talent which prevails occasionally in the North, and which, under the name of “Wut,” is so infinitely distressing to people of good taste, is laughing immoderately at stated intervals.
    Sydney Smith (1771–1845)