Ribonucleotide Reductase

Ribonucleotide reductase (RNR, also known as ribonucleoside diphosphate reductase) is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP (deoxythymidine diphosphate) is synthesized by another enzyme (thymidylate kinase) from dTMP (deoxythymidine monophosphate).

Read more about Ribonucleotide Reductase:  Structure, Function, Metabolic Pathways, Catalytic Reduction Mechanism, Regulation, RNR1 and RNR2 Inhibitors