Reverse Engineering - Reverse Engineering of Machines

Reverse Engineering of Machines

As computer-aided design (CAD) has become more popular, reverse engineering has become a viable method to create a 3D virtual model of an existing physical part for use in 3D CAD, CAM, CAE or other software. The reverse-engineering process involves measuring an object and then reconstructing it as a 3D model. The physical object can be measured using 3D scanning technologies like CMMs, laser scanners, structured light digitizers, or Industrial CT Scanning (computed tomography). The measured data alone, usually represented as a point cloud, lacks topological information and is therefore often processed and modeled into a more usable format such as a triangular-faced mesh, a set of NURBS surfaces, or a CAD model.

Reverse engineering is also used by businesses to bring existing physical geometry into digital product development environments, to make a digital 3D record of their own products, or to assess competitors' products. It is used to analyse, for instance, how a product works, what it does, and what components it consists of, estimate costs, and identify potential patent infringement, etc.

Value engineering is a related activity also used by businesses. It involves de-constructing and analysing products, but the objective is to find opportunities for cost cutting.

Read more about this topic:  Reverse Engineering

Famous quotes containing the words reverse, engineering and/or machines:

    During the late war [the American Revolution] I had an infallible rule for deciding what [Great Britain] would do on every occasion. It was, to consider what they ought to do, and to take the reverse of that as what they would assuredly do, and I can say with truth that I was never deceived.
    Thomas Jefferson (1743–1826)

    Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.
    Merle Colby, U.S. public relief program (1935-1943)

    As machines become more and more efficient and perfect, so it will become clear that imperfection is the greatness of man.
    Ernst Fischer (1899–1972)