Resting Potential

Resting Potential

The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential.

Apart from the latter two, which occur in excitable cells (neurons, muscles, and some secretory cells in glands), membrane voltage in the majority of non-excitable cells can also undergo changes in response to environmental or intracellular stimuli. In principle, there is no difference between resting membrane potential and dynamic voltage changes like action potential from biophysical point of view: all these phenomena are caused by specific changes in membrane permeabilities for potassium, sodium, calcium, and chloride, which in turn result from concerted changes in functional activity of various ion channels, ion transporters, and exchangers. Conventionally, resting membrane potential can be defined as a relatively stable, ground value of transmembrane voltage in animal and plant cells.

Any voltage is a difference in electric potential between two points - for example, the separation of positive and negative electric charges on opposite sides of a resistive barrier. The typical resting membrane potential of a cell arises from the separation of potassium ions from intracellular, relatively immobile anions across the membrane of the cell. Because the membrane permeability for potassium is much higher than that for other ions (disregarding voltage-gated channels at this stage), and because of the strong chemical gradient for potassium, potassium ions flow from the cytosol into the extracellular space carrying out positive charge, until their movement is balanced by build-up of negative charge on the inner surface of the membrane. Again, because of the high relative permeability for potassium, the resulting membrane potential is almost always close to the potassium reversal potential. But in order for this process to occur, a concentration gradient of potassium ions must first be set up. This work is done by the ion pumps/transporters and/or exchangers and generally is powered by ATP.

In the case of the resting membrane potential across an animal cell's plasma membrane, potassium (and sodium) gradients are established by the Na+/K+-ATPase (sodium-potassium pump) which transports 2 potassium ions inside and 3 sodium ions outside at the cost of 1 ATP molecule. In other cases, for example, a membrane potential may be established by acidification of the inside of a membranous compartment (such as the proton pump that generates membrane potential across synaptic vesicle membranes).

Read more about Resting Potential:  Electroneutrality, Generation of The Resting Potential, Membrane Transport Proteins, Equilibrium Potentials, Resting Potentials, Measuring Resting Potentials, Summary of Resting Potential Values in Different Types of Cells

Famous quotes containing the words resting and/or potential:

    I saw God! Do you doubt it?
    Do you dare to doubt it?
    I saw the Almighty Man! His hand
    Was resting on a mountain!
    James Kenneth Stephens (1882–1950)

    Most days I feel like an acrobat high above a crowd out of which my own parents, my in-laws, potential employers, phantoms of “other women who do it” and a thousand faceless eyes stare up.
    —Anonymous Mother. Ourselves and Our Children, by Boston Women’s Health Book Collective, ch. 2 (1978)