Renal Blood Flow - Renal Plasma Flow

Renal Plasma Flow

Renal plasma flow is the volume of plasma that reaches the kidneys per unit time. Renal plasma flow is given by the Fick principle:

This is essentially a conservation of mass equation which balances the renal inputs (the renal artery) and the renal outputs (the renal vein and ureter). Put simply, a non-metabolizable solute entering the kidney via the renal artery has two points of exit, the renal vein and the ureter. The mass entering through the artery per unit time must equal the mass exiting through the vein and ureter per unit time:

where Pa is the arterial plasma concentration of the substance, Pv is its venous plasma concentration, Ux is its urine concentration, and V is the urine flow rate. The product of flow and concentration gives mass per unit time.

As mentioned previously, the difference between arterial and venous blood flow is negligible, so RPFa is assumed to be equal to RPFv, thus

Rearranging yields the previous equation for RPF:

Read more about this topic:  Renal Blood Flow

Famous quotes containing the word flow:

    The current of our thoughts made as sudden bends as the river, which was continually opening new prospects to the east or south, but we are aware that rivers flow most rapidly and shallowest at these points.
    Henry David Thoreau (1817–1862)