Reliability Engineering - Reliability Operational Assessment

Reliability Operational Assessment

After a system is produced, reliability engineering monitors, assesses and corrects deficiencies. Monitoring includes electronic and visual surveillance of critical parameters identified during the fault tree analysis design stage. The data are constantly analyzed using statistical techniques, such as Weibull analysis and linear regression, to ensure the system reliability meets requirements. Reliability data and estimates are also key inputs for system logistics. Data collection is highly dependent on the nature of the system. Most large organizations have quality control groups that collect failure data on vehicles, equipment and machinery. Consumer product failures are often tracked by the number of returns. For systems in dormant storage or on standby, it is necessary to establish a formal surveillance program to inspect and test random samples. Any changes to the system, such as field upgrades or recall repairs, require additional reliability testing to ensure the reliability of the modification. Since it is not possible to anticipate all the failure modes of a given system, especially ones with a human element, failures will occur. The reliability program also includes a systematic root cause analysis that identifies the causal relationships involved in the failure such that effective corrective actions may be implemented. When possible, system failures and corrective actions are reported to the reliability engineering organization.

One of the most common methods to apply to a reliability operational assessment are Failure Reporting, Analysis and Corrective Action Systems (FRACAS). This systematic approach develops a reliability, safety and logistics assessment based on Failure / Incident reporting, management, analysis and corrective/preventive actions. Organizations today are adopting this method and utilize commercial systems such as a Web based FRACAS application enabling an organization to create a failure/incident data repository from which statistics can be derived to view accurate and genuine reliability, safety and quality performances.

It is extremely important to have one common source FRACAS system for all end items. Also, test results should be able to be captured here in a practical way. Failure to adopt one easy to handle (easy data entry for field engineers and repair shop engineers)and maintain integrated system is likely to result in a FRACAS program failure.

Some of the common outputs from a FRACAS system includes: Field MTBF, MTTR, Spares Consumption, Reliability Growth, Failure/Incidents distribution by type, location, part no., serial no, symptom etc.

The use of past data to predict the reliability of new comparable systems/items can be misleading as reliability is a function of the context of use and can be affected by small changes in the designs/manufacturing.

Read more about this topic:  Reliability Engineering

Famous quotes containing the word assessment:

    The first year was critical to my assessment of myself as a person. It forced me to realize that, like being married, having children is not an end in itself. You don’t at last arrive at being a parent and suddenly feel satisfied and joyful. It is a constantly reopening adventure.
    —Anonymous Mother. From the Boston Women’s Health Book Collection. Quoted in The Joys of Having a Child, by Bill and Gloria Adler (1993)