Rational Motion

Rational Motion

In kinematics, the motion of a rigid body is defined as a continuous set of displacements. One-parameter motions can be defined as a continuous displacement of moving object with respect to a fixed frame in Euclidean three-space (E3), where the displacement depends on one parameter, mostly identified as time.

Rational motions are defined by rational functions (ratio of two polynomial functions) of time. They produce rational trajectories, and therefore they integrate well with the existing NURBS (Non-Uniform Rational B-Spline) based industry standard CAD/CAM systems. They are readily amenable to the applications of existing computer-aided geometric design (CAGD) algorithms. By combining kinematics of rigid body motions with NURBS geometry of curves and surfaces, methods have been developed for computer-aided design of rational motions.

These CAD methods for motion design find applications in animation in computer graphics (key frame interpolation), trajectory planning in robotics (taught-position interpolation), spatial navigation in virtual reality, computer-aided geometric design of motion via interactive interpolation, CNC tool path planning, and task specification in mechanism synthesis.

Read more about Rational Motion:  Background, Rational Bezier and B-spline Motions

Famous quotes containing the words rational and/or motion:

    [I]n Great-Britain it is said that their constitution relies on the house of commons for honesty, and the lords for wisdom; which would be a rational reliance if honesty were to be bought with money, and if wisdom were hereditary.
    Thomas Jefferson (1743–1826)

    There’s not the smallest orb which thou behold’st
    But in his motion like an angel sings,
    Still quiring to the young-eyed cherubins;
    Such harmony is in immortal souls,
    But whilst this muddy vesture of decay
    Doth grossly close it in, we cannot hear it.
    William Shakespeare (1564–1616)