The Equation of Radiative Transfer
The equation of radiative transfer simply says that as a beam of radiation travels, it loses energy to absorption, gains energy by emission, and redistributes energy by scattering. The differential form of the equation for radiative transfer is:
where is the emission coefficient, is the scattering cross section, and is the absorption cross section.
Read more about this topic: Radiative Transfer
Famous quotes containing the words equation and/or transfer:
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)
“I have proceeded ... to prevent the lapse from ... the point of blending between wakefulness and sleep.... Not ... that I can render the point more than a pointbut that I can startle myself ... into wakefulnessand thus transfer the point ... into the realm of Memoryconvey its impressions,... to a situation where ... I can survey them with the eye of analysis.”
—Edgar Allan Poe (18091849)