Quintic Function - Beyond Radicals

Beyond Radicals

If the Galois group of a quintic is not solvable, then the Abel-Ruffini theorem tells us that to obtain the roots it is necessary to go beyond the basic arithmetic operations and the extraction of radicals. About 1835, Jerrard demonstrated that quintics can be solved by using ultraradicals (also known as Bring radicals), the real roots of for real numbers . In 1858 Charles Hermite showed that the Bring radical could be characterized in terms of the Jacobi theta functions and their associated elliptic modular functions, using an approach similar to the more familiar approach of solving cubic equations by means of trigonometric functions. At around the same time, Leopold Kronecker, using group theory developed a simpler way of deriving Hermite's result, as had Francesco Brioschi. Later, Felix Klein came up with a method that relates the symmetries of the icosahedron, Galois theory, and the elliptic modular functions that feature in Hermite's solution, giving an explanation for why they should appear at all, and developed his own solution in terms of generalized hypergeometric functions. Similar phenomena occur in degree 7 (septic equations) and 11, as studied by Klein and discussed in icosahedral symmetry: related geometries.

Read more about this topic:  Quintic Function

Famous quotes containing the word radicals:

    Generally young men are regarded as radicals. This is a popular misconception. The most conservative persons I ever met are college undergraduates. The radicals are the men past middle life.
    Woodrow Wilson (1856–1924)

    Nobody but radicals have ever accomplished anything in a great crisis.
    James A. Garfield (1831–1881)