Quantum Annealing - Comparison To Simulated Annealing

Comparison To Simulated Annealing

Quantum annealing can be compared to simulated annealing (SA), whose "temperature" parameter plays a similar role to QA's tunneling field strength. However, in SA the neighborhood stays the same throughout the search, and the temperature determines the probability of moving to a state of higher "energy". In QA, the tunneling field strength determines instead the neighborhood radius, i.e. the mean distance between the next candidate state and the current candidate state.

In more elaborated SA variants (such as Adaptive simulated annealing), the neighborhood radius is also varied using acceptance rate percentages or the temperature value.

Read more about this topic:  Quantum Annealing

Famous quotes containing the words comparison to, comparison and/or simulated:

    In comparison to the French Revolution, the American Revolution has come to seem a parochial and rather dull event. This, despite the fact that the American Revolution was successful—realizing the purposes of the revolutionaries and establishing a durable political regime—while the French Revolution was a resounding failure, devouring its own children and leading to an imperial despotism, followed by an eventual restoration of the monarchy.
    Irving Kristol (b. 1920)

    Certainly there is not the fight recorded in Concord history, at least, if in the history of America, that will bear a moment’s comparison with this, whether for the numbers engaged in it, or for the patriotism and heroism displayed.
    Henry David Thoreau (1817–1862)

    Not too many years ago, a child’s experience was limited by how far he or she could ride a bicycle or by the physical boundaries that parents set. Today ... the real boundaries of a child’s life are set more by the number of available cable channels and videotapes, by the simulated reality of videogames, by the number of megabytes of memory in the home computer. Now kids can go anywhere, as long as they stay inside the electronic bubble.
    Richard Louv (20th century)