Psilocybin - Physiology

Physiology

Although psilocybin may be prepared synthetically, outside of the research setting, it is not typically used in this form. The psilocybin present in certain species of mushrooms can be ingested in several ways: by consuming fresh or dried fruit bodies, by preparing a tisane, or by combining with other foods to mask the bitter taste. Less frequently, mushroom extracts are injected intravenously. The effects of the drug begin 10–40 minutes after ingestion, and last 2–6 hours depending on dose, species, and individual metabolism. The half life of psilocybin is 163 ± 64 minutes when taken orally, or 74.1 ± 19.6 minutes when injected intravenously. A dosage of 4–10 mg, corresponding roughly to 50–300 micrograms per kilogram (µg/kg) of body weight, is required to induce psychedelic effects. A typical recreational dosage is 10–50 mg psilocybin, which is roughly equivalent to 10–50 grams of fresh mushrooms, or 1–5 grams of dried mushrooms. However, a small number of people are unusually sensitive to psilocybin, such that a normally threshold-level dose of about 2 mg can result in effects usually associated with medium or high doses. In contrast, there are some who require relatively high doses to experience noticeable effects. Individual brain chemistry and metabolism play a large role in determining a person's response to psilocybin.

Psilocybin is metabolized mostly in the liver. As it becomes converted to psilocin, it undergoes a first-pass effect, whereby its concentration is greatly reduced before it reaches the systemic circulation. Psilocin is broken down by the enzyme monoamine oxidase to produce several metabolites that can circulate in the blood plasma, including 4-hydroxyindole-3-acetaldehyde, 4-hydroxytryptophol, and 4-hydroxyindole-3-acetic acid. Some psilocin is not broken down by enzymes, and instead forms a glucuronide; this is a biochemical mechanism animals use to eliminate toxic substances by linking them with glucuronic acid, which can then be excreted in the urine. Psilocin is glucuronated by the glucuronosyltransferase enzymes UGT1A9 in the liver, and by UGT1A10 in the small intestine. Based on studies using animals, about 50% of ingested psilocybin is absorbed through the stomach and intestine. Within 24 hours, about 65% of the absorbed psilocybin is excreted into the urine, and a further 15–20% is excreted in the bile and feces. Although most of the remaining drug is eliminated in this way within 8 hours, it is still detectable in the urine after 7 days. Clinical studies show that psilocin concentrations in the plasma of adults average about 8 µg/liter within 2 hours after ingestion of a single 15 mg oral psilocybin dose; psychological effects occur with a blood plasma concentration of 4–6 µg/liter. Psilocybin is about 100 times less potent than LSD on a weight per weight basis, and the physiological effects last about half as long.

Tolerance to psilocybin builds and dissipates quickly; ingesting psilocybin more than about once a week can lead to diminished effects. Tolerance dissipates after a few days, so doses can be spaced several days apart to avoid the effect. A cross-tolerance can develop between psilocybin and the pharmacologically similar LSD, and between psilocybin and phenethylamines such as mescaline and DOM. Monoamine oxidase inhibitors (MAOI) have been known to prolong and enhance the effects of psilocybin. Alcohol consumption may enhance the effects of psilocybin, because acetaldehyde, one of the primary breakdown metabolites of consumed alcohol, reacts with biogenic amines present in the body to produce MAOIs related to tetrahydroisoquinoline and β-carboline. Tobacco smokers can also experience more powerful effects with psilocybin, because tobacco smoke exposure decreases levels of MAO in the brain and peripheral organs.

Read more about this topic:  Psilocybin

Famous quotes containing the word physiology:

    The world moves, but we seem to move with it. When I studied physiology before ... there were two hundred and eight bones in the body. Now there are two hundred and thirty- eight.
    Ellen Henrietta Swallow Richards (1842–1911)

    A physician’s physiology has much the same relation to his power of healing as a cleric’s divinity has to his power of influencing conduct.
    Samuel Butler (1835–1902)

    If church prelates, past or present, had even an inkling of physiology they’d realise that what they term this inner ugliness creates and nourishes the hearing ear, the seeing eye, the active mind, and energetic body of man and woman, in the same way that dirt and dung at the roots give the plant its delicate leaves and the full-blown rose.
    Sean O’Casey (1884–1964)