Pseudoscientists - Boundaries Between Science and Pseudoscience

Boundaries Between Science and Pseudoscience

In the philosophy and history of science, Imre Lakatos stresses the social and political importance of the demarcation problem, the normative methodological problem of distinguishing between science and pseudoscience. His distinctive historical analysis of scientific methodology based on research programmes suggests: "scientists regard the successful theoretical prediction of stunning novel facts – such as the return of Halley's comet or the gravitational bending of light rays – as what demarcates good scientific theories from pseudo-scientific and degenerate theories, and in spite of all scientific theories being forever confronted by 'an ocean of counterexamples'". Lakatos offers a "novel fallibilist analysis of the development of Newton's celestial dynamics, favourite historical example of his methodology" and argues in light of this historical turn, that his account answers for certain inadequacies in those of Sir Karl Popper and Thomas Kuhn. "Nonetheless, Lakatos did recognize the force of Kuhn's historical criticism of Popper – all important theories have been surrounded by an 'ocean of anomalies', which on a falsificationist view would require the rejection of the theory outright… Lakatos sought to reconcile the rationalism of Popperian falsificationism with what seemed to be its own refutation by history".

Many philosophers have tried to solve the problem of demarcation in the following terms: a statement constitutes knowledge if sufficiently many people believe it sufficiently strongly. But the history of thought shows us that many people were totally committed to absurd beliefs. If the strengths of beliefs were a hallmark of knowledge, we should have to rank some tales about demons, angels, devils, and of heaven and hell as knowledge. Scientists, on the other hand, are very sceptical even of their best theories. Newton's is the most powerful theory science has yet produced, but Newton himself never believed that bodies attract each other at a distance. So no degree of commitment to beliefs makes them knowledge. Indeed, the hallmark of scientific behaviour is a certain scepticism even towards one's most cherished theories. Blind commitment to a theory is not an intellectual virtue: it is an intellectual crime.

Thus a statement may be pseudoscientific even if it is eminently 'plausible' and everybody believes in it, and it may be scientifically valuable even if it is unbelievable and nobody believes in it. A theory may even be of supreme scientific value even if no one understands it, let alone believes in it. —Imre Lakatos, Science and Pseudoscience

The boundary lines between science and pseudoscience are disputed and difficult to determine analytically, even after more than a century of dialogue among philosophers of science and scientists in varied fields, and despite some basic agreements on the fundaments of scientific methodology. The concept of pseudoscience rests on an understanding that scientific methodology has been misrepresented or misapplied with respect to a given theory, but many philosophers of science maintain that different kinds of methods are held as appropriate across different fields and different eras of human history. According to Lakatos, the typical descriptive unit of great scientific achievements is not an isolated hypothesis but "a powerful problem-solving machinery, which, with the help of sophisticated mathematical techniques, digests anomalies and even turns them into positive evidence."

To Popper, pseudoscience uses induction to generate theories, and only performs experiments to seek to verify them. To Popper, falsifiability is what determines the scientific status of a theory. Taking a historical approach, Kuhn observed that scientists did not follow Popper's rule, and might ignore falsifying data, unless overwhelming. To Kuhn, puzzle-solving within a paradigm is science. Lakatos attempted to resolve this debate, by suggesting history shows that science occurs in research programmes, competing according to how progressive they are. The leading idea of a programme could evolve, driven by its heuristic to make predictions that can be supported by evidence. Feyerabend claimed that Lakatos was selective in his examples, and the whole history of science shows there is no universal rule of scientific method, and imposing one on the scientific community impedes progress. —David Newbold and Julia Roberts, "An analysis of the demarcation problem in science and its application to therapeutic touch theory" in International Journal of Nursing Practice, Vol. 13

Laudan maintained that the demarcation between science and non-science was a pseudo-problem, preferring to focus on the more general distinction between reliable and unreliable knowledge.

regards Lakatos's view as being closet anarchism disguised as methodological rationalism. It should be noted that Feyerabend's claim was not that standard methodological rules should never be obeyed, but rather that sometimes progress is made by abandoning them. In the absence of a generally accepted rule, there is a need for alternative methods of persuasion. According to Feyerabend, Galileo employed stylistic and rhetorical techniques to convince his reader, while he also wrote in Italian rather than Latin and directed his arguments to those already temperamentally inclined to accept them. —Alexander Bird, "The Historical Turn in the Philosophy of Science" in Routledge Companion to the Philosophy of Science

Read more about this topic:  Pseudoscientists

Famous quotes containing the words boundaries and/or science:

    We must be generously willing to leave for a time the narrow boundaries in which our individual lives are passed ... In this fresh, breezy atmosphere ... we will be surprised to find that many of our familiar old conventional truths look very queer indeed in some of the sudden side lights thrown upon them.
    Bertha Honore Potter Palmer (1849–1918)

    What happened at Hiroshima was not only that a scientific breakthrough ... had occurred and that a great part of the population of a city had been burned to death, but that the problem of the relation of the triumphs of modern science to the human purposes of man had been explicitly defined.
    Archibald MacLeish (1892–1982)