The Existence of Irrational Numbers: Pythagoras Proof
Although not usually considered an "impossibility proof", the proof by Pythagoras or his students that the square-root of 2 cannot be expressed as the ratio of two integers (counting numbers) has had a profound effect on mathematics: it bifurcated "the numbers" into two non-overlapping collections—the rational numbers and the irrational numbers. This bifurcation was used by Cantor in his diagonal method, which in turn was used by Turing in his proof that the Entscheidungsproblem (the decision problem of Hilbert) is undecidable.
ca 500 B.C. "It is unknown when, or by whom, the 'theorem of Pythagoras' was discovered. 'The discovery', says Heath, 'can hardly have been made by Pythagoras himself, but it was certainly made in his school.' Pythagoras lived about 570-490. Democritus, born about 470, wrote 'on irrational lines and solids'...
Proofs followed for various square roots of the primes up to 17. "There is a famous passage in Plato's Theaetetus in which it is stated that Teodorus (Plato's teacher) proved the irrationality of
'taking all the separate cases up to the root of 17 square feet..." (Hardy and Wright, p. 42).
A more general proof now exists that:
- The mth root of an integer N is irrational, unless N is the mth power of an integer n" (Hardy and Wright, p. 40).
Read more about this topic: Proof Of Impossibility
Famous quotes containing the words existence, irrational and/or proof:
“Given the existence ... of a personal God ... who ... loves us dearly ... it is established beyond all doubt ... that man ... wastes and pines ... for reasons unknown.”
—Samuel Beckett (19061989)
“How did reason enter the world? As is fitting, in an irrational way, accidentally. We will have to guess at it, like a riddle.”
—Friedrich Nietzsche (18441900)
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)