Probability Space - Discrete Case

Discrete Case

Discrete probability theory needs only at most countable sample spaces Ω. Probabilities can be ascribed to points of Ω by the probability mass function p: Ω→ such that ∑ω∈Ω p(ω) = 1. All subsets of Ω can be treated as events (thus, = 2Ω is the power set). The probability measure takes the simple form

 (*) \qquad P(A) = \sum_{\omega\in A} p(\omega) \quad \text{for all } A \subseteq \Omega \, .

The greatest σ-algebra = 2Ω describes the complete information. In general, a σ-algebra ⊆ 2Ω corresponds to a finite or countable partition Ω = B1B2 ⊔ ..., the general form of an event A ∈ being A = Bk1Bk2 ⊔ ... (here ⊔ means the disjoint union.) See also the examples.

The case p(ω) = 0 is permitted by the definition, but rarely used, since such ω can safely be excluded from the sample space.

Read more about this topic:  Probability Space

Famous quotes containing the words discrete and/or case:

    One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.
    Joshua Meyrowitz, U.S. educator, media critic. “The Blurring of Public and Private Behaviors,” No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)

    It was a maxim with Mr. Brass that the habit of paying compliments kept a man’s tongue oiled without any expense; and that, as that useful member ought never to grow rusty or creak in turning on its hinges in the case of a practitioner of the law, in whom it should be always glib and easy, he lost few opportunities of improving himself by the utterance of handsome speeches and eulogistic expressions
    Charles Dickens (1812–1870)