Probabilistic Risk Assessment

Probabilistic Risk Assessment

Probabilistic risk assessment (PRA) is a systematic and comprehensive methodology to evaluate risks associated with a complex engineered technological entity (such as an airliner or a nuclear power plant).

Risk in a PRA is defined as a feasible detrimental outcome of an activity or action. In a PRA, risk is characterized by two quantities:

  1. the magnitude (severity) of the possible adverse consequence(s), and
  2. the likelihood (probability) of occurrence of each consequence.

Consequences are expressed numerically (e.g., the number of people potentially hurt or killed) and their likelihoods of occurrence are expressed as probabilities or frequencies (i.e., the number of occurrences or the probability of occurrence per unit time). The total risk is the expected loss: the sum of the products of the consequences multiplied by their probabilities.

The spectrum of risks across classes of events are also of concern, and are usually controlled in licensing processes – it would be of concern if rare but high consequence events were found to dominate the overall risk, particularly as these risk assessments are very sensitive to assumptions (how rare is a high consequence event?).

Probabilistic Risk Assessment usually answers three basic questions:

  1. What can go wrong with the studied technological entity, or what are the initiators or initiating events (undesirable starting events) that lead to adverse consequence(s)?
  2. What and how severe are the potential detriments, or the adverse consequences that the technological entity may be eventually subjected to as a result of the occurrence of the initiator?
  3. How likely to occur are these undesirable consequences, or what are their probabilities or frequencies?

Two common methods of answering this last question are Event Tree Analysis and Fault Tree Analysis - for explanations of these, see safety engineering.

In addition to the above methods, PRA studies require special but often very important analysis tools like human reliability analysis (HRA) and common-cause-failure analysis (CCF). HRA deals with methods for modeling human error while CCF deals with methods for evaluating the effect of inter-system and intra-system dependencies which tend to cause simultaneous failures and thus significant increases in overall risk.

In 2007 France was criticised for failing to use a PRA approach to evaluate the seismic risks of French nuclear power plants.

Read more about Probabilistic Risk Assessment:  Criticism, See Also, External Links

Famous quotes containing the words risk and/or assessment:

    Kemmerick: He’s dead. He’s dead.
    Katczinsky: Why did you risk your life bringing him in?
    Kemmerick: But it’s Behm. My friend.
    Katczinsky: It’s a corpse, no matter who it is.
    Maxwell Anderson (1888–1959)

    The first year was critical to my assessment of myself as a person. It forced me to realize that, like being married, having children is not an end in itself. You don’t at last arrive at being a parent and suddenly feel satisfied and joyful. It is a constantly reopening adventure.
    —Anonymous Mother. From the Boston Women’s Health Book Collection. Quoted in The Joys of Having a Child, by Bill and Gloria Adler (1993)