Prime Ideal - Prime Ideals For Commutative Rings

Prime Ideals For Commutative Rings

An ideal P of a commutative ring R is prime if it has the following two properties:

  • If a and b are two elements of R such that their product ab is an element of P, then a is in P or b is in P,
  • P is not equal to the whole ring R.

This generalizes the following property of prime numbers: if p is a prime number and if p divides a product ab of two integers, then p divides a or p divides b. We can therefore say

A positive integer n is a prime number if and only if the ideal nZ is a prime ideal in Z.

Read more about this topic:  Prime Ideal

Famous quotes containing the words prime, ideals and/or rings:

    If Montaigne is a man in the prime of life sitting in his study on a warm morning and putting down the sum of his experience in his rich, sinewy prose, then Pascal is that same man lying awake in the small hours of the night when death seems very close and every thought is heightened by the apprehension that it may be his last.
    Cyril Connolly (1903–1974)

    It does not follow, because our difficulties are stupendous, because there are some souls timorous enough to doubt the validity and effectiveness of our ideals and our system, that we must turn to a state controlled or state directed social or economic system in order to cure our troubles.
    Herbert Hoover (1874–1964)

    You held my hand
    and were instant to explain
    the three rings of danger.
    Anne Sexton (1928–1974)