Plasma-immersion Ion Implantation - Working

Working

In a conventional immersion type of PIII system, also called as the diode type configuration, the wafer is kept at a negative potential since the positively charged ions of the electropositive plasma are the ones who get extracted and implanted. The wafer sample to be treated is placed on a sample holder in a vacuum chamber. The sample holder is connected to a high voltage power supply and is electrically insulated from the chamber wall. By means of pumping and gas feed systems, an atmosphere of a working gas at a suitable pressure is created.

When the substrate is biased to a negative voltage (few KV's), the resultant electric field drives electrons away from the substrate in the time scale of the inverse electron plasma frequency ωe−1 ( ~ l0−9 sec). Thus an ion matrix Debye sheath which is depleted of electrons forms around it. The negatively biased substrate will accelerate the ions within a time scale of the inverse ion plasma frequency ωi−1 ( ~ 10−6 sec). This ion movement lowers the ion density in the bulk, which causes the sheath-plasma boundary to expand in order to sustain the applied potential drop,in the process exposing more ions. The plasma sheath expands until either a steady-state condition is reached, which is called Child Langmuir law limit; or the high voltage is switched off as in the case of Pulsed DC biasing. Pulse biasing is preferred over DC biasing because it creates less damage during the pulse ON time and neutralization of unwanted charges accumulated on the wafer in the afterglow period (i.e. after the pulse has ended). In case of pulsed biasing the TON time of the pulse is generally kept at 20-40 µs, while the TOFF is kept at 0.5-2 ms i.e. a duty cycle of 1-8%. The power supply used is in range of 500 V to hundreds of KV and the pressure in the range of 1-100 mTorr. This is the basic principle of the operation of immersion type PIII.

In case of a triode type configuration, a suitable perforated grid is placed in between the substrate and the plasma and a pulsed DC bias is applied to this grid. Here the same theory applies as previously discussed, but with a difference that the extracted ions from the grid holes bombard the substrate, thus causing implantation. In this sense a triode type PIII implanter is a crude version of ion implantation because it does not contain plethora of components like ion beam steering, beam focusing, additional grid accelerators etc.

Read more about this topic:  Plasma-immersion Ion Implantation

Famous quotes containing the word working:

    As for work, without it, without painstaking work, any writer or artist definitely remains a dilettante; there’s no point in waiting for so-called blissful moments, for inspiration; if it comes, so much the better—but you keep working anyway.
    Ivan Sergeevich Turgenev (1818–1883)

    English audiences of working people are like an instrument that responds to the player. Thought ripples up and down them, and if in some heart the speaker strikes a dissonance there is a swift answer. Always the voice speaks from gallery or pit, the terrible voice which detaches itself in every English crowd, full of caustic wit, full of irony or, maybe, approval.
    Mary Heaton Vorse (1874–1966)

    Every woman who visited the Fair made it the center of her orbit. Here was a structure designed by a woman, decorated by women, managed by women, filled with the work of women. Thousands discovered women were not only doing something, but had been working seriously for many generations ... [ellipsis in source] Many of the exhibits were admirable, but if others failed to satisfy experts, what of it?
    Kate Field (1838–1908)