Pinhole Camera Model

The pinhole camera model describes the mathematical relationship between the coordinates of a 3D point and its projection onto the image plane of an ideal pinhole camera, where the camera aperture is described as a point and no lenses are used to focus light. The model does not include, for example, geometric distortions or blurring of unfocused objects caused by lenses and finite sized apertures. It also does not take into account that most practical cameras have only discrete image coordinates. This means that the pinhole camera model can only be used as a first order approximation of the mapping from a 3D scene to a 2D image. Its validity depends on the quality of the camera and, in general, decreases from the center of the image to the edges as lens distortion effects increase.

Some of the effects that the pinhole camera model does not take into account can be compensated for, for example by applying suitable coordinate transformations on the image coordinates, and other effects are sufficiently small to be neglected if a high quality camera is used. This means that the pinhole camera model often can be used as a reasonable description of how a camera depicts a 3D scene, for example in computer vision and computer graphics.

Read more about Pinhole Camera Model:  The Geometry and Mathematics of The Pinhole Camera, Homogeneous Coordinates, See Also

Famous quotes containing the words camera and/or model:

    The camera relieves us of the burden of memory. It surveys us like God, and it surveys for us. Yet no other god has been so cynical, for the camera records in order to forget.
    John Berger (b. 1926)

    Research shows clearly that parents who have modeled nurturant, reassuring responses to infants’ fears and distress by soothing words and stroking gentleness have toddlers who already can stroke a crying child’s hair. Toddlers whose special adults model kindliness will even pick up a cookie dropped from a peer’s high chair and return it to the crying peer rather than eat it themselves!
    Alice Sterling Honig (20th century)