Physical Information - Classical Versus Quantum Information

Classical Versus Quantum Information

The instance of information that is contained in a physical system is generally considered to specify that system's "true" state. (In many practical situations, a system's true state may be largely unknown, but a realist would insist that a physical system regardless always has, in principle, a true state of some sort—whether classical or quantum.)

When discussing the information that is contained in physical systems according to modern quantum physics, we must distinguish between classical information and quantum information. Quantum information specifies the complete quantum state vector (or equivalently, wavefunction) of a system, whereas classical information, roughly speaking, only picks out a definite (pure) quantum state if we are already given a prespecified set of distinguishable (orthogonal) quantum states to choose from; such a set forms a basis for the vector space of all the possible pure quantum states (see pure state). Quantum information could thus be expressed by providing (1) a choice of a basis such that the actual quantum state is equal to one of the basis vectors, together with (2) the classical information specifying which of these basis vectors is the actual one. (However, the quantum information by itself does not include a specification of the basis, indeed, an uncountable number of different bases will include any given state vector.)

Note that the amount of classical information in a quantum system gives the maximum amount of information that can actually be measured and extracted from that quantum system for use by external classical (decoherent) systems, since only basis states are operationally distinguishable from each other. The impossibility of differentiating between non-orthogonal states is a fundamental principle of quantum mechanics, equivalent to Heisenberg's uncertainty principle. Because of its more general utility, the remainder of this article will deal primarily with classical information, although quantum information theory does also have some potential applications (quantum computing, quantum cryptography, quantum teleportation) that are currently being actively explored by both theorists and experimentalists.

Read more about this topic:  Physical Information

Famous quotes containing the words classical, quantum and/or information:

    Classical art, in a word, stands for form; romantic art for content. The romantic artist expects people to ask, What has he got to say? The classical artist expects them to ask, How does he say it?
    —R.G. (Robin George)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it.
    Samuel Johnson (1709–1784)