Photosensitive Ganglion Cell - Overview

Overview

Compared to the rods and cones, the ipRGC respond more sluggishly and signal the presence of light over the long term. They represent a small subset (~1-3%) of the retinal ganglion cells. Their functional roles are non-image-forming and fundamentally different from those of pattern vision; they provide a stable representation of ambient light intensity. They have at least three primary functions.

  • They play a major role in synchronizing circadian rhythms to the 24-hour light/dark cycle, providing primarily length-of-day and length-of night information. They send light information via the retinohypothalamic tract directly to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. The physiological properties of these ganglion cells match known properties of the daily light entrainment (synchronization) mechanism regulating circadian rhythms.
  • Photosensitive ganglion cells innervate other brain targets, such as the center of pupillary control, the olivary pretectal nucleus of the midbrain. They contribute to the regulation of pupil size and other behavioral responses to ambient lighting conditions.
  • They contribute to photic regulation of, and acute photic suppression of, release of the hormone melatonin from the pineal gland.

Photosensitive ganglion cells are also responsible for the persistence of circadian and pupillary light responses in mammals with degenerated rod and cone photoreceptors, such as humans suffering from retinitis pigmentosa.

Recently photoreceptive ganglion cells have been isolated in humans where, in addition to the above functions shown in other mammals, they have been shown to mediate a degree of light recognition in rodless, coneless subjects suffering with disorders of rod and cone photoreceptors. Work by Farhan H. Zaidi and colleagues showed that photoreceptive ganglion cells may have a visual function and can be isolated in humans.

The photopigment of photoreceptive ganglion cells, melanopsin, is excited by light mainly in the blue portion of the visible spectrum (absorption peaks at ~480 nanometers). The phototransduction mechanism in these cells is not fully understood, but seems likely to resemble that in invertebrate rhabdomeric photoreceptors. Photosensitive ganglion cells respond to light by depolarizing and increasing the rate at which they fire nerve impulses. In addition to responding directly to light, these cells may receive excitatory and inhibitory influences from rods and cones by way of synaptic connections in the retina.

Read more about this topic:  Photosensitive Ganglion Cell