Perturbation Theory - History

History

Perturbation theory has its roots in early celestial mechanics, where the theory of epicycles was used to make small corrections to the predicted paths of planets. Curiously, it was the need for more and more epicycles that eventually led to the 16th century Copernican revolution in the understanding of planetary orbits. The development of basic perturbation theory for differential equations was fairly complete by the middle of the 19th century. It was at that time that Charles-Eugène Delaunay was studying the perturbative expansion for the Earth-Moon-Sun system, and discovered the so-called "problem of small denominators". Here, the denominator appearing in the n'th term of the perturbative expansion could become arbitrarily small, causing the n'th correction to be as large or larger than the first-order correction. At the turn of the 20th century, this problem led Henri Poincaré to make one of the first deductions of the existence of chaos, or what is prosaically called the "butterfly effect": that even a very small perturbation can have a very large effect on a system.

Perturbation theory saw a particularly dramatic expansion and evolution with the arrival of quantum mechanics. Although perturbation theory was used in the semi-classical theory of the Bohr atom, the calculations were monstrously complicated, and subject to somewhat ambiguous interpretation. The discovery of Heisenberg's matrix mechanics allowed a vast simplification of the application of perturbation theory. Notable examples are the Stark effect and the Zeeman effect, which have a simple enough theory to be included in standard undergraduate textbooks in quantum mechanics. Other early applications include the fine structure and the hyperfine structure in the hydrogen atom.

In modern times, perturbation theory underlies much of quantum chemistry and quantum field theory. In chemistry, perturbation theory was used to obtain the first solutions for the helium atom.

In the middle of the 20th century, Richard Feynman realized that the perturbative expansion could be given a dramatic and beautiful graphical representation in terms of what are now called Feynman diagrams. Although originally applied only in quantum field theory, such diagrams now find increasing use in any area where perturbative expansions are studied.

A partial resolution of the small-divisor problem was given by the statement of the KAM theorem in 1954. Developed by Andrey Kolmogorov, Vladimir Arnold and Jürgen Moser, this theorem stated the conditions under which a system of partial differential equations will have only mildly chaotic behaviour under small perturbations.

In the late 20th century, broad dissatisfaction with perturbation theory in the quantum physics community, including not only the difficulty of going beyond second order in the expansion, but also questions about whether the perturbative expansion is even convergent, has led to a strong interest in the area of non-perturbative analysis, that is, the study of exactly solvable models. The prototypical model is the Korteweg–de Vries equation, a highly non-linear equation for which the interesting solutions, the solitons, cannot be reached by perturbation theory, even if the perturbations were carried out to infinite order. Much of the theoretical work in non-perturbative analysis goes under the name of quantum groups and non-commutative geometry.

Read more about this topic:  Perturbation Theory

Famous quotes containing the word history:

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)

    In the history of the human mind, these glowing and ruddy fables precede the noonday thoughts of men, as Aurora the sun’s rays. The matutine intellect of the poet, keeping in advance of the glare of philosophy, always dwells in this auroral atmosphere.
    Henry David Thoreau (1817–1862)

    Hence poetry is something more philosophic and of graver import than history, since its statements are rather of the nature of universals, whereas those of history are singulars.
    Aristotle (384–322 B.C.)