Peptide Synthesis - Microwave Assisted Peptide Synthesis

Microwave Assisted Peptide Synthesis

See also: microwave chemistry

Although microwave irradiation has been around since the late 1940s, it was not until 1986 that microwave energy was used in organic chemistry. During the end of the 1980s and 1990s, microwave energy was an obvious source for completing chemical reactions in minutes that would otherwise take several hours to days. Through several technical improvements at the end of the 1990s and beginning of the 2000s, microwave synthesizers have been designed to provide both low and high energy pockets of microwave energy so that the temperature of the reaction mixture could be controlled. The microwave energy used in peptide synthesis is of a single frequency providing maximum penetration depth of the sample which is in contrast to conventional kitchen microwaves.

In peptide synthesis, microwave irradiation has been used to complete long peptide sequences with high degrees of yield and low degrees of racemization. Microwave irradiation during the coupling of amino acids to a growing polypeptide chain is not only catalyzed through the increase in temperature, but also due to the alternating electromagnetic radiation to which the polar backbone of the polypeptide continuously aligns to. Due to this phenomenon, the microwave energy can prevent aggregation and thus increases yields of the final peptide product. There is however no clear evidence that microwave is better than simple heating and some peptide laboratories regard microwave just as a convenient method for rapid heating of the peptidyl resin. Heating to above 50-55 degrees Celsius also prevents aggregation and accelerates the coupling.

Despite the main advantages of microwave irradiation of peptide synthesis, the main disadvantage is the racemization which may occur with the coupling of cysteine and histidine. A typical coupling reaction with these amino acids are performed at lower temperatures than the other 18 natural amino acids. A number of peptides do not survive microwave synthesis or heating in general. One of the more serious side effects is dehydration (loss of water) which for certain peptides can be almost quantitative like pancreatic polypeptide (PP). This side effect is also seen by simple heating without the use of microwave.

Read more about this topic:  Peptide Synthesis

Famous quotes containing the words microwave, assisted and/or synthesis:

    The New Age? It’s just the old age stuck in a microwave oven for fifteen seconds.
    James Randi (b. 1928)

    To anticipate, not the sunrise and the dawn merely, but, if possible, Nature herself! How many mornings, summer and winter, before yet any neighbor was stirring about his business, have I been about mine! No doubt, many of my townsmen have met me returning from this enterprise, farmers starting for Boston in the twilight, or woodchoppers going to their work. It is true, I never assisted the sun materially in his rising, but, doubt not, it was of the last importance only to be present at it.
    Henry David Thoreau (1817–1862)

    The invention of photography provided a radically new picture-making process—a process based not on synthesis but on selection. The difference was a basic one. Paintings were made—constructed from a storehouse of traditional schemes and skills and attitudes—but photographs, as the man on the street put, were taken.
    Jean Szarkowski (b. 1925)