Particle System - "Snowflakes" Versus "Hair"

"Snowflakes" Versus "Hair"

Particle systems can be either animated or static; that is, the lifetime of each particle can either be distributed over time or rendered all at once. The consequence of this distinction is similar to the difference between snowflakes and hair - animated particles are akin to snowflakes, which move around as distinct points in space, and static particles are akin to hair, which consists of a distinct number of curves.

The term "particle system" itself often brings to mind only the animated aspect, which is commonly used to create moving particulate simulations — sparks, rain, fire, etc. In these implementations, each frame of the animation contains each particle at a specific position in its life cycle, and each particle occupies a single point position in space. For effects such as fire or smoke that dissipate, each particle is given a fade out time or fixed lifetime; effects such as snowstorms or rain instead usually terminate the lifetime of the particle once it passes out of a particular field of view.

However, if the entire life cycle of each particle is rendered simultaneously, the result is static particles — strands of material that show the particles' overall trajectory, rather than point particles. These strands can be used to simulate hair, fur, grass, and similar materials. The strands can be controlled with the same velocity vectors, force fields, spawning rates, and deflection parameters that animated particles obey. In addition, the rendered thickness of the strands can be controlled and in some implementations may be varied along the length of the strand. Different combinations of parameters can impart stiffness, limpness, heaviness, bristliness, or any number of other properties. The strands may also use texture mapping to vary the strands' color, length, or other properties across the emitter surface.

Read more about this topic:  Particle System

Famous quotes containing the word hair:

    He may have hair upon his chest
    But, sister, so has Lassie.
    Cole Porter (1891–1964)