Partial Trace - Partial Trace For Operators On Hilbert Spaces

Partial Trace For Operators On Hilbert Spaces

The partial trace generalizes to operators on infinite dimensional Hilbert spaces. Suppose V, W are Hilbert spaces, and let

be an orthonormal basis for W. Now there is an isometric isomorphism

Under this decomposition, any operator can be regarded as an infinite matrix of operators on V

 \begin{bmatrix} T_{11} & T_{12} & \ldots & T_{1 j} & \ldots \\ T_{21} & T_{22} & \ldots & T_{2 j} & \ldots \\ \vdots & \vdots & & \vdots \\ T_{k1}& T_{k2} & \ldots & T_{k j} & \ldots \\ \vdots & \vdots & & \vdots
\end{bmatrix},

where .

First suppose T is a non-negative operator. In this case, all the diagonal entries of the above matrix are non-negative operators on V. If the sum

converges in the strong operator topology of L(V), it is independent of the chosen basis of W. The partial trace TrW(T) is defined to be this operator. The partial trace of a self-adjoint operator is defined if and only if the partial traces of the positive and negative parts are defined.

Read more about this topic:  Partial Trace

Famous quotes containing the words partial, trace and/or spaces:

    Both the man of science and the man of art live always at the edge of mystery, surrounded by it. Both, as a measure of their creation, have always had to do with the harmonization of what is new with what is familiar, with the balance between novelty and synthesis, with the struggle to make partial order in total chaos.... This cannot be an easy life.
    J. Robert Oppenheimer (1904–1967)

    What terrible questions we are learning to ask! The former men believed in magic, by which temples, cities, and men were swallowed up, and all trace of them gone. We are coming on the secret of a magic which sweeps out of men’s minds all vestige of theism and beliefs which they and their fathers held and were framed upon.
    Ralph Waldo Emerson (1803–1882)

    We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.
    Henry David Thoreau (1817–1862)