Partial Trace - Partial Trace For Operators On Hilbert Spaces

Partial Trace For Operators On Hilbert Spaces

The partial trace generalizes to operators on infinite dimensional Hilbert spaces. Suppose V, W are Hilbert spaces, and let

be an orthonormal basis for W. Now there is an isometric isomorphism

Under this decomposition, any operator can be regarded as an infinite matrix of operators on V

 \begin{bmatrix} T_{11} & T_{12} & \ldots & T_{1 j} & \ldots \\ T_{21} & T_{22} & \ldots & T_{2 j} & \ldots \\ \vdots & \vdots & & \vdots \\ T_{k1}& T_{k2} & \ldots & T_{k j} & \ldots \\ \vdots & \vdots & & \vdots
\end{bmatrix},

where .

First suppose T is a non-negative operator. In this case, all the diagonal entries of the above matrix are non-negative operators on V. If the sum

converges in the strong operator topology of L(V), it is independent of the chosen basis of W. The partial trace TrW(T) is defined to be this operator. The partial trace of a self-adjoint operator is defined if and only if the partial traces of the positive and negative parts are defined.

Read more about this topic:  Partial Trace

Famous quotes containing the words partial, trace and/or spaces:

    The one-eyed man will be King in the country of the blind only if he arrives there in full possession of his partial faculties—that is, providing he is perfectly aware of the precise nature of sight and does not confuse it with second sight ... nor with madness.
    Angela Carter (1940–1992)

    To love someone is to isolate him from the world, wipe out every trace of him, dispossess him of his shadow, drag him into a murderous future. It is to circle around the other like a dead star and absorb him into a black light.
    Jean Baudrillard (b. 1929)

    through the spaces of the dark
    Midnight shakes the memory
    As a madman shakes a dead geranium.
    —T.S. (Thomas Stearns)