Parasitism - Evolutionary Aspects

Evolutionary Aspects

Biotrophic parasitism is a common mode of life that has arisen independently many times in the course of evolution. Depending on the definition used, as many as half of all animals have at least one parasitic phase in their life cycles, and it is also frequent in plants and fungi. Moreover, almost all free-living animals are host to one or more parasitic taxa.

Parasites evolve in response to the defense mechanisms of their hosts. As a result of host defenses, some parasites evolve adaptations that are specific to a particular host taxon, specializing to the point where they infect only a single species. Such narrow host specificity can be costly over evolutionary time, however, if the host species becomes extinct. Therefore many parasites can infect a variety of more or less closely related host species, with different success rates.

Host defenses also evolve in response to attacks by parasites. Theoretically, parasites may have an advantage in this evolutionary arms race because their generation time commonly is shorter. Hosts reproduce less quickly than parasites, and therefore have fewer chances to adapt than their parasites do over a given span of time.

In some cases, a parasitic species may coevolve with its host taxa. Long-term coevolution sometimes leads to a relatively stable relationship tending to commensalism or mutualism, as, all else being equal, it is in the evolutionary interest of the parasite that its host thrives. A parasite may evolve to become less harmful for its host or a host may evolve to cope with the unavoidable presence of a parasite—to the point that the parasite's absence causes the host harm. For example, although animals infected with parasitic worms are often clearly harmed, and therefore parasitized, such infections may also reduce the prevalence and effects of autoimmune disorders in animal hosts, including humans.

Competition between parasites tends to favor faster reproducing and therefor more virulent parasites. Parasites whose life cycle involves the death of the host, to exit the present host and sometimes to enter the next, evolve to be more virulent or even alter the behavior or other properties of the host to make it more vulnerable to predators. Parasites that reproduce largely to the offspring of the previous host tend to become less virulent or mutualist, so that its hosts reproduce more effectively.

The presumption of a shared evolutionary history between parasites and hosts can sometimes elucidate how host taxa are related. For instance, there has been dispute about whether flamingos are more closely related to the storks and their relatives, or to ducks, geese and their relatives. The fact that flamingos share parasites with ducks and geese is evidence these groups may be more closely related to each other than either is to storks.

Parasitism is part of one explanation for the evolution of secondary sex characteristics seen in breeding males throughout the animal world, such as the plumage of male peacocks and manes of male lions. According to this theory, female hosts select males for breeding based on such characteristics because they indicate resistance to parasites and other disease.

Read more about this topic:  Parasitism

Famous quotes containing the words evolutionary and/or aspects:

    The point is, ladies and gentlemen, that greed, for lack of a better word, is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
    Stanley Weiser, U.S. screenwriter, and Oliver Stone. Gordon Gekko (Michael Douglas)

    That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prized—all these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.
    Fred Rogers (20th century)