Parallel Computing - Algorithmic Methods

Algorithmic Methods

As parallel computers become larger and faster, it becomes feasible to solve problems that previously took too long to run. Parallel computing is used in a wide range of fields, from bioinformatics (protein folding and sequence analysis) to economics (mathematical finance). Common types of problems found in parallel computing applications are:

  • Dense linear algebra
  • Sparse linear algebra
  • Spectral methods (such as Cooley–Tukey fast Fourier transform)
  • n-body problems (such as Barnes–Hut simulation)
  • Structured grid problems (such as Lattice Boltzmann methods)
  • Unstructured grid problems (such as found in finite element analysis)
  • Monte Carlo simulation
  • Combinational logic (such as brute-force cryptographic techniques)
  • Graph traversal (such as sorting algorithms)
  • Dynamic programming
  • Branch and bound methods
  • Graphical models (such as detecting hidden Markov models and constructing Bayesian networks)
  • Finite-state machine simulation

Read more about this topic:  Parallel Computing

Famous quotes containing the word methods:

    How can you tell if you discipline effectively? Ask yourself if your disciplinary methods generally produce lasting results in a manner you find acceptable. Whether your philosophy is democratic or autocratic, whatever techniques you use—reasoning, a “star” chart, time-outs, or spanking—if it doesn’t work, it’s not effective.
    Stanley Turecki (20th century)