Orthogonal Matrix - Overview

Overview

An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix. Although we consider only real matrices here, the definition can be used for matrices with entries from any field. However, orthogonal matrices arise naturally from dot products, and for matrices of complex numbers that leads instead to the unitary requirement. Orthogonal matrices preserve the dot product, so, for vectors u, v in an n-dimensional real Euclidean space

where Q is an orthogonal matrix. To see the inner product connection, consider a vector v in an n-dimensional real Euclidean space. Written with respect to an orthonormal basis, the squared length of v is vTv. If a linear transformation, in matrix form Qv, preserves vector lengths, then

Thus finite-dimensional linear isometries—rotations, reflections, and their combinations—produce orthogonal matrices. The converse is also true: orthogonal matrices imply orthogonal transformations. However, linear algebra includes orthogonal transformations between spaces which may be neither finite-dimensional nor of the same dimension, and these have no orthogonal matrix equivalent.

Orthogonal matrices are important for a number of reasons, both theoretical and practical. The n×n orthogonal matrices form a group under matrix multiplication, the orthogonal group denoted by O(n), which—with its subgroups—is widely used in mathematics and the physical sciences. For example, the point group of a molecule is a subgroup of O(3). Because floating point versions of orthogonal matrices have advantageous properties, they are key to many algorithms in numerical linear algebra, such as QR decomposition. As another example, with appropriate normalization the discrete cosine transform (used in MP3 compression) is represented by an orthogonal matrix.

Read more about this topic:  Orthogonal Matrix