Organosilicon - Siloxides

Siloxides

More notably bonds of silicon to oxygen are much shorter and stronger (809 compared to 538 kJ/mol) than that of those of carbon to oxygen. The polarization in this bond increases towards oxygen. Examples are silyl acetals RR'Si(OR)2, the silanols, the siloxanes and the polymeric polysiloxanes. Silyl ethers are extensively used as protective groups for alcohols. Only silicon bonds to fluorine are stronger and that is why the fluorine source TASF (or more commonly TBAF) is useful in deprotection. The favorable formation of Si–O bonds drive many organic reactions such as the Brook rearrangement and Peterson olefination.

Another manifestation is the highly explosive nature of the silicon pendant Si(CH2ONO2)4 and Si(CH2N3)4 of pentaerythritol tetranitrate :

A single crystal of this compound, first synthesized in 2007 even detonates when in contact with a teflon spatula and in fact made full characterization impossible. Another contributor to its exothermic decomposition (inferred from much safer in silico experimentation) is the ability of silicon in its crystal phase to coordinate to two oxygen nitrito groups in addition to regular coordination to the four carbon atoms. This additional coordination would make formation of silicon dioxide (one of the decomposition products) more facile.

Read more about this topic:  Organosilicon