Organic Synthesis - Methodology and Applications

Methodology and Applications

Each step of a synthesis involves a chemical reaction, and reagents and conditions for each of these reactions need to be designed to give a good yield and a pure product, with as little work as possible. A method may already exist in the literature for making one of the early synthetic intermediates, and this method will usually be used rather than "trying to reinvent the wheel". However most intermediates are compounds that have never been made before, and these will normally be made using general methods developed by methodology researchers. To be useful, these methods need to give high yields, and to be reliable for a broad range of substrates. For practical applications, additional hurdles include industrial standards of safety and purity. Methodology research usually involves three main stages: discovery, optimisation, and studies of scope and limitations. The discovery requires extensive knowledge of and experience with chemical reactivities of appropriate reagents. Optimisation is where one or two starting compounds are tested in the reaction under a wide variety of conditions of temperature, solvent, reaction time, etc., until the optimum conditions for product yield and purity are found. Finally, the researcher tries to extend the method to a broad range of different starting materials, to find the scope and limitations. Total synthesis (see above) are sometimes used to showcase the new methodology and demonstrate its value in a real-world application. Such applications involved major industries focused especially on polymers (and plastics) and on pharmaceuticals.

Read more about this topic:  Organic Synthesis

Famous quotes containing the word methodology:

    One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.
    Paul Feyerabend (1924–1994)