In Diophantine approximation, the Oppenheim conjecture concerns representations of numbers by real quadratic forms in several variables. It was formulated in 1929 by Alexander Oppenheim and later the conjectured property was further strengthened by Davenport and Oppenheim. Initial research on this problem took the number n of variables to be large, and applied a version of the Hardy-Littlewood circle method. The definitive work of Margulis, settling the conjecture in the affirmative, used methods arising from ergodic theory and the study of discrete subgroups of semisimple Lie groups.
Read more about Oppenheim Conjecture: Short Description, History
Famous quotes containing the words oppenheim and/or conjecture:
“Although there are not real winners or losers, in games of pretending children soon learn that the game ends when mutuality ends.”
—Joanne E. Oppenheim (20th century)
“There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)