Olfaction - Olfaction in Plants and Animals

Olfaction in Plants and Animals

The tendrils of plants are especially sensitive to airborne volatile organic compounds. Parasites such as dodder make use of this in locating their preferred hosts and locking on to them. The emission of volatile compounds is detected when foliage is browsed by animals. Threatened plants are then able to take defensive chemical measures, such as moving tannin compounds to their foliage. (see Plant perception).

The importance and sensitivity of smell varies among different organisms; most mammals have a good sense of smell, whereas most birds do not, except the tubenoses (e.g., petrels and albatrosses), certain species of vultures and the kiwis. Among mammals, it is well-developed in the carnivores and ungulates, which must always be aware of each other, and in those that smell for their food, like moles. Having a strong sense of smell is referred to as macrosmatic.

Figures suggesting greater or lesser sensitivity in various species reflect experimental findings from the reactions of animals exposed to aromas in known extreme dilutions. These are, therefore, based on perceptions by these animals, rather than mere nasal function. That is, the brain's smell-recognizing centers must react to the stimulus detected, for the animal to show a response to the smell in question. It is estimated that dogs in general have an olfactory sense approximately a hundred thousand to a million times more acute than a human's. This does not mean they are overwhelmed by smells our noses can detect; rather, it means they can discern a molecular presence when it is in much greater dilution in the carrier, air. Scenthounds as a group can smell one- to ten-million times more acutely than a human, and Bloodhounds, which have the keenest sense of smell of any dogs, have noses ten- to one-hundred-million times more sensitive than a human's. They were bred for the specific purpose of tracking humans, and can detect a scent trail a few days old. The second-most-sensitive nose is possessed by the Basset Hound, which was bred to track and hunt rabbits and other small animals.

Bears, such as the Silvertip Grizzly found in parts of North America, have a sense of smell seven times stronger than that of the bloodhound, essential for locating food underground. Using their elongated claws, bears dig deep trenches in search of burrowing animals and nests as well as roots, bulbs, and insects. Bears can detect the scent of food from up to 18 miles away; because of their immense size, they often scavenge new kills, driving away the predators (including packs of wolves and human hunters) in the process.

The sense of smell is less-developed in the catarrhine primates (Catarrhini), and nonexistent in cetaceans, which compensate with a well-developed sense of taste. In some prosimians, such as the Red-bellied Lemur, scent glands occur atop the head. In many species, olfaction is highly tuned to pheromones; a male silkworm moth, for example, can sense a single molecule of bombykol.

Fish too have a well-developed sense of smell, even though they inhabit an aquatic environment. Salmon utilize their sense of smell to identify and return to their home stream waters. Catfish use their sense of smell to identify other individual catfish and to maintain a social hierarchy. Many fishes use the sense of smell to identify mating partners or to alert to the presence of food.

Insects use primarily their antennae for olfaction. Sensory neurons in the antenna generate odor-specific electrical signals called spikes in response to odor. They process these signals from the sensory neurons in the antennal lobe followed by the mushroom bodies and lateral horn of the brain. The antennae have the sensory neurons in the sensilla and they have their axons terminating in the antennal lobes, where they synapse with other neurons there in semidelineated (with membrane boundaries) called glomeruli. These antennal lobes have two kinds of neurons, projection neurons (excitatory) and local neurons (inhibitory). The projection neurons send their axon terminals to mushroom body and lateral horn (both of which are part of the protocerebrum of the insects), and local neurons have no axons. Recordings from projection neurons show in some insects strong specialization and discrimination for the odors presented (especially for the projection neurons of the macroglomeruli, a specialized complex of glomeruli responsible for the pheromones detection). Processing beyond this level is not exactly known though some preliminary results are available.

Read more about this topic:  Olfaction

Famous quotes containing the words plants and/or animals:

    Luxurious Man, to bring his Vice in use,
    Did after him the World seduce:
    And from the fields the Flow’rs and Plants allure,
    Andrew Marvell (1621–1678)

    Man is head, chest and stomach. Each of these animals operates, more often than not, individually. I eat, I feel, I even, although rarely, think.... This jungle crawls and teems, is hungry, roars, gets angry, devours itself, and its cacophonic concert does not even stop when you are asleep.
    René Daumal (1908–1944)