Other Instruments
In addition to examination of the universe in the optical spectrum, astronomers have increasingly been able to acquire information in other portions of the electromagnetic spectrum. The earliest such non-optical measurements were made of the thermal properties of the Sun. Instruments employed during a solar eclipse could be used to measure the radiation from the corona.
With the discovery of radio waves, radio astronomy began to emerge as a new discipline in astronomy. The long wavelengths of radio waves required much larger collecting dishes in order to make images with good resolution, and later led to the development of the multi-dish interferometer for making high-resolution aperture synthesis radio images (or "radio maps"). The development of the microwave horn receiver led to the discovery of the microwave background radiation associated with the big bang.
Radio astronomy has continued to expand its capabilities, even using radio astronomy satellites to produce interferometers with baselines much larger than the size of the Earth. However, the ever-expanding use of the radio spectrum for other uses is gradually drowning out the faint radio signals from the stars. For this reason, in the future radio astronomy might be performed from shielded locations, such as the far side of the Moon.
The last part of the twentieth century saw rapid technological advances in astronomical instrumentation. Optical telescopes were growing ever larger, and employing adaptive optics to partly negate atmospheric blurring. New telescopes were launched into space, and began observing the universe in the infrared, ultraviolet, x-ray, and gamma ray parts of the electromagnetic spectrum, as well as observing cosmic rays. Interferometer arrays produced the first extremely high-resolution images using aperture synthesis at radio, infrared and optical wavelengths. Orbiting instruments such as the Hubble Space Telescope produced rapid advances in astronomical knowledge, acting as the workhorse for visible-light observations of faint objects. New space instruments under development are expected to directly observe planets around other stars, perhaps even some Earth-like worlds.
In addition to telescopes, astronomers have begun using other instruments to make observations.
Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories, usually huge underground tanks. Nuclear reactions in stars and supernova explosions produce very large numbers of neutrinos, a very few of which may be detected by a neutrino telescope. Neutrino astronomy is motivated by the possibility of observing processes that are inaccessible to optical telescopes, such as the Sun's core.
Gravitational wave detectors are being designed that may capture events such as collisions of massive objects such as neutron stars. Robotic spacecraft are also being increasingly used to make highly detailed observations of planets within the solar system, so that the field of planetary science now has significant cross-over with the disciplines of geology and meteorology.
Read more about this topic: Observational Astronomy
Famous quotes containing the word instruments:
“I lay my eternal curse on whomsoever shall now or at any time hereafter make schoolbooks of my works and make me hated as Shakespeare is hated. My plays were not designed as instruments of torture. All the schools that lust after them get this answer, and will never get any other.”
—George Bernard Shaw (18561950)
“The universe appears to me like an immense, inexorable torture-garden.... Passions, greed, hatred, and lies; law, social institutions, justice, love, glory, heroism, and religion: these are its monstrous flowers and its hideous instruments of eternal human suffering.”
—Octave Mirbeau (18501917)