Nitric Oxide Dioxygenase - Reaction Mechanism

Reaction Mechanism

The mechanism of action has still not been entirely deduced, however, the leading theory suggests that the conversion is carried out through a series of redox reactions involving iron centers as shown in the series of half reactions below:

Step Reaction
FAD reduction NAD(P)H + FAD + H+ → NAD(P)+ + FADH2
Iron reduction 1 FADH2 + Fe3+ → Fe2+ + FADH + H+
Iron Reduction 2 FADH + Fe3+ → FAD + Fe2+ + H+
O2 Binding Fe2+ + O2 → Fe3+(O2-)
NO dioxygenation Fe3+(O2-) + NO → Fe3+ + NO3-

Another theory developed more recently (2009) suggests that a NO dioxygenase activity could also proceed through phenolic nitration via a putative heme-peroxynitrite intermediate.

The most well studied NO dioxygenase is flavohemoglobin (flavoHb), shown to the right: Studies have shown that flavohemoglobins are induced by NO, nitrite, nitrate, and NO-releasing agents in various bacteria and fungi. Additionally, flavoHbs have been shown to protect bacteria, yeast, and Dictyostelium discoideum against growth inhibition and damage mediated via NO.

Read more about this topic:  Nitric Oxide Dioxygenase

Famous quotes containing the words reaction and/or mechanism:

    Christianity was only a very strong and singularly well-timed Salvation Army movement that happened to receive help from an unusual and highly dramatic incident. It was a Puritan reaction in an age when, no doubt, a Puritan reaction was much wanted; but like all sudden violent reactions, it soon wanted reacting against.
    Samuel Butler (1835–1902)

    When one of us dies of cancer, loses her mind, or commits suicide, we must not blame her for her inability to survive an ongoing political mechanism bent on the destruction of that human being. Sanity remains defined simply by the ability to cope with insane conditions.
    Ana Castillo (b. 1953)