Neutron Transport - Neutron Transport Equation

Neutron Transport Equation

The neutron transport equation is a balance statement that conserves neutrons. Each term represents a gain or a loss of a neutron, and the balance, in essence, claims that neutrons gained equals neutrons lost. It is formulated as follows:

Where:

Symbol Meaning Comments
Position vector (i.e. x,y,z)
Energy
Unit vector (solid angle) in direction of motion
Time
Neutron velocity vector
Angular neutron flux
Amount of neutron track length in a differential volume about, associated with particles of a differential energy in about, moving in a differential solid angle in about, at time .
Note integrating over all angles yields scalar neutron flux
Scalar neutron flux
Amount of neutron track length in a differential volume about, associated with particles of a differential energy in about, at time .
Average number of neutrons produced per fission (e.g., 2.43 for U-235).
Probability density function for neutrons of exit energy from all neutrons produced by fission
Probability density function for neutrons of exit energy from all neutrons produced by delayed neutron precursors
Macroscopic total cross section, which includes all possible interactions
Macroscopic fission cross section, which includes all fission interactions in about
Double differential scattering cross section
Characterizes scattering of a neutron from an incident energy and direction to a final energy in and direction in .
Number of delayed neutron precursors
Decay constant for precursor i
Total number of precursor i in at time
Source term

The transport equation can be applied to a given part of phase space (time t, energy E, location, and direction of travel ). The first term represents the time rate of change of neutrons in the system. The second terms describes the movement of neutrons into or out of the volume of space of interest. The third term accounts for all neutrons that have a collision in that phase space. The first term on the right hand side is the production of neutrons in this phase space due to fission, while the second term on the right hand side is the production of neutrons in this phase space due to delayed neutron precursors (i.e., unstable nuclei which undergo neutron decay). The third term on the right hand side is in-scattering, these are neutrons that enter this area of phase space as a result of scattering interactions in another. The fourth term on the right is a generic source. The equation is usually solved to find, since that will allow for the calculation of reaction rates, which are of primary interest in shielding and dosimetry studies.

Read more about this topic:  Neutron Transport

Famous quotes containing the words transport and/or equation:

    One may disavow and disclaim vices that surprise us, and whereto our passions transport us; but those which by long habits are rooted in a strong and ... powerful will are not subject to contradiction. Repentance is but a denying of our will, and an opposition of our fantasies.
    Michel de Montaigne (1533–1592)

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)