Neuronal Noise - Background

Background

Neuronal noise begins at the microscopic level with atomic collisions and agitation. On the postsynaptic membrane, neural noise has been evident in the early stages of processing sight, smell, and hearing. The exact reason for neuronal noise relating to computational processing is still not currently understood, but a great deal of theories have been proposed.

Single neurons demonstrate different responses to specific neuronal input signals. This is commonly referred to as neural response variability. If a specific input signal is initiated in the dendrites of a neuron, then a hypervariability exists in the number of vesicles released from the axon terminal fiber into the synapse. This characteristic is true for fibers without neural input signals, such as pacemaker neurons, as mentioned previously, and cortical pyramidal neurons that have highly-irregular firing pattern. Noise generally hinders neural performance, but recent studies show, in dynamical non-linear neural networks, this statement does not always hold true. Non-linear neural networks are a network of complex neurons that have many connections with one another such as the neuronal systems found within our brains. Comparatively, linear networks are an experimental view of analyzing a neural system by placing neurons in series with each other.

Initially, noise in complex computer circuit or neural circuits is thought to slow down and negatively affect the processing power. However, current research suggests that neuronal noise is beneficial to non-linear or complex neural networks up until optimal value. A theory by Anderson and colleagues supports that neural noise is beneficial. Their theory suggests that noise produced in the visual cortex helps linearize or smooth the threshold of action potentials.

Another theory suggests that stochastic noise in a non-linear network shows a positive relationship between the interconnectivity and noise-like activity. Thus based on this theory, Patrick Wilken and colleagues suggest that neuronal noise is the principal factor that limits the capacity of visual short-term memory. Investigators of neural ensembles and those who especially support the theory of distributed processing, propose that large neuronal populations effectively decrease noise by averaging out the noise in individual neurons. Some investigators have shown in experiments and in models that neuronal noise is a possible mechanism to facilitate neuronal processing. The presence of neuronal noise (or more specifically synaptic noise) confers to neurons more sensitivity to a broader range of inputs, it can equalize the efficacy of synaptic inputs located at different positions on the neuron, and it can also enable finer temporal discrimination. There are many theories of why noise is apparent in the neuronal networks, but many neurologists are unclear of why they exist.

Read more about this topic:  Neuronal Noise

Famous quotes containing the word background:

    They were more than hostile. In the first place, I was a south Georgian and I was looked upon as a fiscal conservative, and the Atlanta newspapers quite erroneously, because they didn’t know anything about me or my background here in Plains, decided that I was also a racial conservative.
    Jimmy Carter (James Earl Carter, Jr.)

    Silence is the universal refuge, the sequel to all dull discourses and all foolish acts, a balm to our every chagrin, as welcome after satiety as after disappointment; that background which the painter may not daub, be he master or bungler, and which, however awkward a figure we may have made in the foreground, remains ever our inviolable asylum, where no indignity can assail, no personality can disturb us.
    Henry David Thoreau (1817–1862)

    In the true sense one’s native land, with its background of tradition, early impressions, reminiscences and other things dear to one, is not enough to make sensitive human beings feel at home.
    Emma Goldman (1869–1940)