N-connected - n-connected Map

n-connected Map

The corresponding relative notion to the absolute notion of an n-connected space is an n-connected map, which is defined as a map whose homotopy fiber Ff is an (n − 1)-connected space. In terms of homotopy groups, it means that a map is n-connected if and only if:

  • is an isomorphism for, and
  • is a surjection.

The last condition is frequently confusing; it is because the vanishing of the (n − 1)-st homotopy group of the homotopy fiber Ff corresponds to a surjection on the nth homotopy groups, in the exact sequence:

If the group on the right vanishes, then the map on the left is a surjection.

Low-dimensional examples:

  • A connected map (0-connected map) is one that is onto path components (0th homotopy group); this corresponds to the homotopy fiber being non-empty.
  • A simply connected map (1-connected map) is one that is an isomorphism on path components (0th homotopy group) and onto the fundamental group (1st homotopy group).

n-connectivity for spaces can in turn be defined in terms of n-connectivity of maps: a space X with basepoint x0 is an n-connected space if and only if the inclusion of the basepoint is an n-connected map. The single point set is contractible, so all its homotopy groups vanish, and thus "isomorphism below n and onto at n" corresponds to the first n homotopy groups of X vanishing.

Read more about this topic:  N-connected

Famous quotes containing the word map:

    You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.
    Bill Bryson (b. 1951)