Multi-scale Approaches - Scale-space Theory For One-dimensional Signals

Scale-space Theory For One-dimensional Signals

For one-dimensional signals, there exists quite a well-developed theory for continuous and discrete kernels that guarantee that new local extrema or zero-crossings cannot be created by a convolution operation. For continuous signals, it holds that all scale-space kernels can be decomposed into the following sets of primitive smoothing kernels:

  • the Gaussian kernel : where ,
  • truncated exponential kernels (filters with one real pole in the s-plane):
    if and 0 otherwise where
    if and 0 otherwise where ,
  • translations,
  • rescalings.

For discrete signals, we can, up to trivial translations and rescalings, decompose any discrete scale-space kernel into the following primitive operations:

  • the discrete Gaussian kernel
where where are the modified Bessel functions of integer order,
  • generalized binomial kernels corresponding to linear smoothing of the form
where
where ,
  • first-order recursive filters corresponding to linear smoothing of the form
where
where ,
  • the one-sided Poisson kernel
for where
for where .

From this classification, it is apparent that it we require a continuous semi-group structure, there are only three classes of scale-space kernels with a continuous scale parameter; the Gaussian kernel which forms the scale-space of continuous signals, the discrete Gaussian kernel which forms the scale-space of discrete signals and the time-causal Poisson kernel that forms a temporal scale-space over discrete time. If we on the other hand sacrifice the continuous semi-group structure, there are more options:

For discrete signals, the use of generalized binomial kernels provides a formal basis for defining the smoothing operation in a pyramid. For temporal data, the one-sided truncated exponential kernels and the first-order recursive filters provide a way to define time-causal scale-spaces that allow for efficient numerical implementation and respect causality over time without access to the future. The first-order recursive filters also provide a framework for defining recursive approximations to the Gaussian kernel that in a weaker sense preserve some of the scale-space properties.

Read more about this topic:  Multi-scale Approaches

Famous quotes containing the words theory and/or signals:

    The things that will destroy America are prosperity-at-any- price, peace-at-any-price, safety-first instead of duty-first, the love of soft living, and the get-rich-quick theory of life.
    Theodore Roosevelt (1858–1919)

    The term preschooler signals another change in our expectations of children. While toddler refers to physical development, preschooler refers to a social and intellectual activity: going to school. That shift in emphasis is tremendously important, for it is at this age that we think of children as social creatures who can begin to solve problems.
    Lawrence Kutner (20th century)