Mu Wave - Brain-computer Interfaces

Brain-computer Interfaces

Brain-computer interfaces (BCIs) are a developing technology that clinicians hope will one day bring more independence and agency to the severely physically disabled. Those the technology has the potential to help include people with near-total or total paralysis, such as those with tetraplegia (quadriplegia) or advanced amyotrophic lateral sclerosis (ALS); BCIs are intended to help them to communicate or even move objects such as motorized wheelchairs, neuroprostheses, or robotic grasping tools. Few of these technologies are currently in regular use by people with disabilities, but a diverse array are in development at an experimental level. One type of BCI uses event-related desynchronization (ERD) of the mu wave in order to control the computer. This method of monitoring brain activity takes advantage of the fact that when a group of neurons is at rest they tend to fire in synchrony with each other. When a participant is cued to imagine movement (an "event"), the resulting desynchronization (the group of neurons that was firing in synchronous waves now firing in complex and individualized patterns) can be reliably detected and analyzed by a computer. Users of such an interface are trained in visualizing movements, typically of the foot, hand, and/or tongue, which are each in different locations on the cortical homunculus and thus distinguishable by an electroencephalograph (EEG) or electrocorticograph (ECoG) recording of electrical activity over the motor cortex. In this method, computers monitor for a typical pattern of mu wave ERD contralateral to the visualized movement combined with event-related synchronization (ERS) in the surrounding tissue. This paired pattern intensifies with training, and the training increasingly takes the form of games, some of which utilize virtual reality. Some researchers have found that the feedback from virtual reality games is particularly effective in giving the user tools to improve control of his or her mu wave patterns. The ERD method can be combined with one or more other methods of monitoring the brain's electrical activity to create hybrid BCIs, which often offer more flexibility than a BCI that uses any single monitoring method.

Read more about this topic:  Mu Wave