MOST (satellite) - Description

Description

As its name suggests, its primary mission is to monitor variations in star light, which it does by observing a single target for a long period of time (up to 60 days). Larger space telescopes cannot afford to remain focused on a single target for so long due to the demand for their resources.

At 53 kg (117 pounds) 65 cm (26 in) wide and tall and 30 cm (12 in) deep, it is the size and weight of a small chest or an extra-large suitcase filled with electronics. This places it in the microsatellite category.

MOST was developed as a joint effort of the Canadian Space Agency, Dynacon Enterprises Limited, the Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies, and the University of British Columbia. Led by Principal Investigator Jaymie Matthews, the MOST science team's plan is to use observations from MOST to use asteroseismology to help date the age of the universe, and to search for visible-light signatures from extrasolar planets.

MOST features an instrument comprising a visible-light dual-CCD camera, fed by a 15-cm aperture Maksutov telescope. One CCD gathers science images, while the other provides images used by star-tracking software that, along with a set of four reaction wheels (computer-controlled motorized flywheels that are similar to gyroscopes) maintain pointing with an error of less than 1 arc-second, better pointing by far than any other microsatellite to date.

The design of the rest of MOST was inspired by and based on microsatellite bus designs pioneered by AMSAT, and first brought to commercial viability by the microsatellite company SSTL (based at the University of Surrey in the UK); during the early stages of MOST development, the core group of AMSAT microsatellite satellite designers advised and mentored the MOST satellite design team, via a know-how transfer arrangement with UTIAS. This approach to satellite design is notable for making use of commercial-grade electronics, along with a "small team," "early prototyping" engineering development approach rather different from that used in most other space-engineering programs, to achieve relatively very low costs: MOST's life-cycle cost (design, build, launch and operate) is less than $10 million in Canadian funds (about 7 million Euros or 6 million USD, at exchange rates at time of launch).

Development of the satellite was managed by the Canadian Space Agency's Space Science Branch, and was funded under its Small Payloads Program; its operations are currently (as of 2012) managed by the CSA's Space Exploration Branch. It is operated by SFL (where the primary MOST ground station is located) jointly with Microsat Systems Canada Inc. (since the sale of Dynacon's space division to MSCI in 2008). As of seven years after launch, despite failures of two of its components (one of the four reaction wheels and one of the two CCD driver boards), the satellite is still operating well, as a result of both on-going on-board software upgrades as well as built-in hardware redundancy, allowing improvements to performance and to reconfigure around failed hardware units.

In 2008 the MOST Satellite Project Team won the Alouette Award, which recognizes outstanding contributions to advancement in Canadian space technology, applications, science or engineering.

Read more about this topic:  MOST (satellite)

Famous quotes containing the word description:

    He hath achieved a maid
    That paragons description and wild fame;
    One that excels the quirks of blazoning pens.
    William Shakespeare (1564–1616)

    To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.
    Oscar Wilde (1854–1900)

    An intentional object is given by a word or a phrase which gives a description under which.
    Gertrude Elizabeth Margaret Anscombe (b. 1919)