Molten Salt Battery - Primary Cells

Primary Cells

Referred to as thermal batteries, the electrolyte is solid and inactive at normal ambient temperatures. The origin of the thermal battery dates back to World War II when German scientist Dr. Ing. Georg Otto Erb developed the first practical cells, using a salt mixture as an electrolyte. Erb developed batteries for several military applications, including the V-1 flying bomb and the V-2 rocket, and artillery fuzing systems. However, none of these batteries entered field use before the end of World War II. Following the end of the war, Erb was interrogated by British intelligence and his work was reported in a document titled "The Theory and Practice of Thermal Cells". This information was subsequently passed on to the United States Ordnance Development Division of the National Bureau of Standards.

When the technology reached the United States in 1946 it was immediately applied to replacing the troublesome liquid-based systems that had previously been used to power artillery proximity fuzes. These batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. They are the primary power source for many missiles such as the AIM-9 Sidewinder, MIM-104 Patriot, BGM-71 TOW, BGM-109 Tomahawk and others. In these batteries the electrolyte is immobilized when molten by a special grade of magnesium oxide that holds it in place by capillary action. This powdered mixture is pressed into pellets to form a separator between the anode and cathode of each cell in the battery stack. As long as the electrolyte (salt) is solid, the battery is inert and remains inactive. Each cell also contains a pyrotechnic heat source which is used to heat the cell to the typical operating temperature of 400–550°C.

There are two types of design. One uses a fuze strip (containing barium chromate and powdered zirconium metal in a ceramic paper) along the edge of the heat pellets to initiate burning. The fuze strip is typically fired by an electrical igniter or squib by application of electric current through it. The second design uses a center hole in the middle of the battery stack into which the high-energy electrical igniter fires a mixture of hot gases and incandescent particles. The center-hole design allows much faster activation times (tens of milliseconds) vs. hundreds of milliseconds for the edge-strip design. Battery activation can also be accomplished by a percussion primer, similar to a shotgun shell. It is desired that the pyrotechnic source be gasless. The standard heat source typically consist of mixtures of iron powder and potassium perchlorate in weight ratios of typically 88/12, 86/14, and 84/16. The higher the potassium perchlorate level, the higher the heat output (nominally 200, 259, and 297 calories/gram, respectively).

This property of unactivated storage has the double benefit of avoiding deterioration of the active materials during storage and at the same time it eliminates the loss of capacity due to self-discharge until the battery is called into use. They can thus be stored indefinitely (over 50 years) yet provide full power in an instant when it is required. Once activated, they provide a high burst of power for a short period (a few tens of seconds) to over 60 minutes or more, with power output ranging from a few watts to several kilowatts. The high power capability is due to the very high ionic conductivity of the molten salt, which is three orders of magnitude or more greater than that of sulfuric acid in a lead-acid car battery. Older thermal batteries used calcium or magnesium anodes, with cathodes of calcium chromate or vanadium or tungsten oxides, but lithium-alloy anodes replaced these in the 1980s, with lithium-silicon alloys being favored over the older lithium-aluminium alloys. The corresponding cathode for use with the lithium-alloy anodes is mainly iron disulfide (pyrite) with cobalt disulfide being used for high-power applications. The electrolyte is normally a eutectic mixture of lithium chloride and potassium chloride. More recently, other lower-melting, eutectic electrolytes based on lithium bromide, potassium bromide, and lithium chloride or lithium fluoride have also been used to provide longer operational lifetimes; they are also better conductors. The so-called "all-lithium" electrolyte based on lithium chloride, lithium bromide, and lithium fluoride (no potassium salts) is also used for high-power applications, because of its high ionic conductivity.

These batteries are used almost exclusively for military applications i.e. "one-shot" weapons such as guided missiles. However, the same technology was also studied by Argonne National Laboratories in the 1980s for possible use in electric vehicles, since the technology is rechargeable.

A radioisotope thermal generator, e.g. pellets of 90SrTiO4, can be used for long-term delivery of heat for the battery after activation, keeping it in molten state.

Read more about this topic:  Molten Salt Battery

Famous quotes containing the words primary and/or cells:

    The primary distinction of the artist is that he must actively cultivate that state which most men, necessarily, must avoid: the state of being alone.
    James Baldwin (1924–1987)

    If I’d written all the truth I knew for the past ten years, about 600 people—including me—would be rotting in prison cells from Rio to Seattle today. Absolute truth is a very rare and dangerous commodity in the context of professional journalism.
    Hunter S. Thompson (b. 1939)