Modified Newtonian Dynamics - Overview: Galaxy Dynamics

Overview: Galaxy Dynamics

The original purpose of MOND was to explain the galactic rotation curves for spiral galaxies. A spiral galaxy consists of a bulge of stars at the centre with a vast disc of stars orbiting around the central group. If the orbits of the stars were governed solely by gravitational force and the observed distribution of normal matter (stars, gas clouds, dust, etc.), it was expected that stars at the outer edge of the disc would have a much lower orbital velocity than those near the middle. In the observed galaxies this pattern is not apparent. Stars near the outer edge orbit the centre of the galaxy at the same speed as stars closer to the middle.

The dotted curve A in Figure 1 at left shows the predicted orbital velocity as a function of distance from the galactic center assuming neither MOND nor dark matter. The solid curve B shows the observed distribution. Instead of decreasing asymptotically to zero as the effect of gravity wanes, this curve remains flat, showing the same velocity at increasing distances from the bulge. Astronomers call this phenomenon the "flattening of galaxies' rotation curves".

Scientists hypothesized that the flatness of the rotation of galaxies is caused by matter outside the galaxy's visible disc. Since all large galaxies show the same characteristic, large galaxies must, according to this line of reasoning, be embedded in a halo of invisible "dark" matter.

Read more about this topic:  Modified Newtonian Dynamics

Famous quotes containing the words galaxy and/or dynamics:

    for it is not so much to know the self
    as to know it as it is known
    by galaxy and cedar cone,
    as if birth had never found it

    and death could never end it:
    Archie Randolph Ammons (b. 1926)

    Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.
    Cathy Rindner Tempelsman (20th century)