Model Lipid Bilayer - Black Lipid Membranes (BLM)

Black Lipid Membranes (BLM)

The earliest model bilayer system developed was the “painted” bilayer, also known as a “black lipid membrane.” The term “painted” refers to the process by which these bilayers are made. First, a small aperture is created in a thin layer of a hydrophobic material such as Teflon. Typically the diameter of this hole is a few tens of micrometers up to hundreds of micrometers. To form a BLM, the area around the aperture is first "pre-painted" with a solution of lipids dissolved in a hydrophobic solvent by applying this solution across the aperture with a brush, syringe, or glass applicator. The solvent used must have a very high partition coefficient and must be relatively viscous to prevent immediate rupture. The most common solvent used is a mixture of decane and squalene. After allowing the aperture to dry, salt solution (aqueous phase) is added to both sides of the chamber. The aperture is then "painted" with a lipid solution (generally the same solution that was used for pre-painting). A lipid monolayer spontaneously forms at the interface between the organic and aqueous phases on either side of the lipid/solvent droplet. Because the walls of the aperture are hydrophobic the lipid/solvent solution wets this interface, thinning the droplet in the center. Once the two sides of the droplet come close enough together, the lipid monolayers fuse, rapidly excluding the small remaining volume of solution. At this point a bilayer is formed in the center of the aperture, but a significant annulus of solvent remains at the perimeter. This annulus is required to maintain stability by acting as a bridge between the ~5 nm bilayer and the 10's of micrometer thick sheet in which the aperture is made.

The term “black” bilayer refers to the fact that they are dark in reflected light because the thickness of the membrane is only a few nanometers, so light reflecting off the back face destructively interferes with light reflecting off the front face. Indeed, this was one of the first clues that this technique produced a membrane of molecular-scale thickness. Black lipid membranes are also well suited to electrical characterization because the two chambers separated by the bilayer are both accessible, allowing simple placement of large electrodes. For this reason, electrical characterization is one of the most important methods used in conjunction with painted lipid bilayers. Simple measurements indicate when a bilayer forms and when it breaks, as an intact bilayer has a large resistance (>GΩ) and a large capacitance (~2 µF/cm2). More advanced electrical characterization has been particularly important in the study of voltage gated ion channels. Membrane proteins such as ion channels typically cannot be incorporated directly into the painted bilayer during formation because immersion in an organic solvent would denature the protein. Instead, the protein is solubilized with a detergent and added to the aqueous solution after the bilayer is formed. The detergent coating allows these proteins to spontaneously insert into the bilayer over a period of minutes. Additionally, initial experiments have been performed which combine electrophysiological and structural investigations of black lipid membranes. In another variation of the BLM technique, termed the bilayer punch, a glass pipet (inner diameter ~10-40 µm) is used as the electrode on one side of the bilayer in order to isolate a small patch of membrane. This modification of the patch clamp technique enables low noise recording, even at high potentials (up to 600 mV), at the expense of additional preparation time.

The main problems associated with painted bilayers are residual solvent and limited lifetime. Some researchers believe that pockets of solvent trapped between the two bilayer leaflets can disrupt normal protein function. To overcome this limitation, Montal and Mueller developed a modified deposition technique that eliminates the use of a heavy non-volatile solvent. In this method, the aperture starts out above the water surface, completely separating the two fluid chambers. On the surface of each chamber, a monolayer is formed by applying lipids in a volatile solvent such as chloroform and waiting for the solvent to evaporate. The aperture is then lowered through the air-water interface and the two monolayers from the separate chambers are folded down against each other, forming a bilayer across the aperture. The stability issue has proven more difficult to solve. Typically, a black lipid membrane will survive for less than an hour, precluding long-term experiments. This lifetime can be extended by precisely structuring the supporting aperture, chemically crosslinking the lipids or gelling the surrounding solution to mechanically support the bilayer. Work is ongoing in this area and lifetimes of several hours will become feasible.

Read more about this topic:  Model Lipid Bilayer

Famous quotes containing the words black and/or membranes:

    Today masses of black women in the U.S. refuse to acknowledge that they have much to gain by feminist struggle. They fear feminism. They have stood in place so long that they are afraid to move. They fear change. They fear losing what little they have.
    bell hooks (b. c. 1955)

    The cause of Sense, is the External Body, or Object, which presseth the organ proper to each Sense, either immediately, as in the Taste and Touch; or mediately, as in Seeing, Hearing, and Smelling: which pressure, by the mediation of Nerves, and other strings, and membranes of the body, continued inwards to the Brain, and Heart, causeth there a resistance, or counter- pressure, or endeavor of the heart, to deliver it self: which endeavor because Outward, seemeth to be some matter without.
    Thomas Hobbes (1579–1688)