**Epistemic Logic**

**Epistemic modalities** (from the Greek *episteme*, knowledge), deal with the *certainty* of sentences. The operator is translated as "x knows that…", and the operator is translated as "For all x knows, it may be true that…" In ordinary speech both metaphysical and epistemic modalities are often expressed in similar words; the following contrasts may help:

A person, Jones, might reasonably say *both*: (1) "No, it is *not* possible that Bigfoot exists; I am quite certain of that"; *and*, (2) "Sure, Bigfoot possibly *could* exist". What Jones means by (1) is that given all the available information, there is no question remaining as to whether Bigfoot exists. This is an epistemic claim. By (2) he makes the *metaphysical* claim that it is *possible for* Bigfoot to exist, *even though he does not* (which is not equivalent to "it is *possible that* Bigfoot exists – for all I know", which contradicts (1)).

From the other direction, Jones might say, (3) "It is *possible* that Goldbach's conjecture is true; but also *possible* that it is false", and *also* (4) "if it *is* true, then it is necessarily true, and not possibly false". Here Jones means that it is *epistemically possible* that it is true or false, for all he knows (Goldbach's conjecture has not been proven either true or false), but if there *is* a proof (heretofore undiscovered), then it would show that it is not *logically* possible for Goldbach's conjecture to be false—there could be no set of numbers that violated it. Logical possibility is a form of *alethic* possibility; (4) makes a claim about whether it is possible (i.e., logically speaking) that a mathematical truth to have been false, but (3) only makes a claim about whether it is possible, for all Jones knows, (i.e., speaking of certitude) that the mathematical claim is specifically either true or false, and so again Jones does not contradict himself. It is worthwhile to observe that Jones is not necessarily correct: It is possible (epistemically) that Goldbach's conjecture is both true and unprovable.

Epistemic possibilities also bear on the actual world in a way that metaphysical possibilities do not. Metaphysical possibilities bear on ways the world *might have been,* but epistemic possibilities bear on the way the world *may be* (for all we know). Suppose, for example, that I want to know whether or not to take an umbrella before I leave. If you tell me "it is *possible that* it is raining outside" – in the sense of epistemic possibility – then that would weigh on whether or not I take the umbrella. But if you just tell me that "it is *possible for* it to rain outside" – in the sense of *metaphysical possibility* – then I am no better off for this bit of modal enlightenment.

Some features of epistemic modal logic are in debate. For example, if *x* knows that *p*, does *x* know that it knows that *p*? That is to say, should be an axiom in these systems? While the answer to this question is unclear, there is at least one axiom that is generally included in epistemic modal logic, because it is minimally true of all normal modal logics (see the section on axiomatic systems):

**K**,*Distribution Axiom*: .

But this is disconcerting, because with **K**, we can prove that we know all the logical consequences of our beliefs: If *q* is a logical consequence of *p*, then . And if so, then we can deduce that using **K**. When we translate this into epistemic terms, this says that if *q* is a logical consequence of *p*, then we know that it is, and if we know *p*, we know *q*. That is to say, we know all the logical consequences of our beliefs. This must be true for all possible Kripkean modal interpretations of epistemic cases where is translated as "knows that". But then, for example, if *x* knows that prime numbers are divisible only by themselves and the number one, then *x* knows that 8683317618811886495518194401279999999 is prime (since this number is only divisible by itself and the number one). That is to say, under the modal interpretation of knowledge, anyone who knows the definition of a prime number knows that this number is prime. This shows that epistemic modal logics that are based on normal modal systems provide an idealized account of knowledge, and explain objective, rather than subjective knowledge (if anything).

Read more about this topic: Modal Logic

### Famous quotes containing the word logic:

“Our argument ... will result, not upon *logic* by itself—though without *logic* we should never have got to this point—but upon the fortunate contingent fact that people who would take this logically possible view, after they had really imagined themselves in the other man’s position, are extremely rare.”

—Richard M. Hare (b. 1919)