Mitochondrion - Replication and Inheritance

Replication and Inheritance

See also: mitochondrial genome

Mitochondria have long been thought to divide by binary fission similar to bacterial cell division; however, it has recently been revealed that mitochondria actually divide by budding similar to the reproduction of many of alpha-proteobacteria, mitochondria's phylogenetic ancestors. On the other hand, mitochondria can fuse with other mitochondria. The regulation of this division differs between eukaryotes. In many single-celled eukaryotes, their growth and division is linked to the cell cycle. For example, a single mitochondrion may divide synchronously with the nucleus. This division and segregation process must be tightly controlled so that each daughter cell receives at least one mitochondrion. In other eukaryotes (in mammals for example), mitochondria may replicate their DNA and divide mainly in response to the energy needs of the cell, rather than in phase with the cell cycle. When the energy needs of a cell are high, mitochondria grow and divide. When the energy use is low, mitochondria are destroyed or become inactive. In such examples, and in contrast to the situation in many single celled eukaryotes, mitochondria are apparently randomly distributed to the daughter cells during the division of the cytoplasm. Understanding of mitochondrial dynamics, which is described as the balance between mitochondrial fusion and fission, has revealed that functional and structural alterations in mitochondrial morphology are important factors in pathologies associated with several disease conditions.

An individual's mitochondrial genes are not inherited by the same mechanism as nuclear genes. Typically, the mitochondria are inherited from one parent only. In humans, when an egg cell is fertilized by a sperm, the egg nucleus and sperm nucleus each contribute equally to the genetic makeup of the zygote nucleus. In contrast, the mitochondria, and therefore the mitochondrial DNA, usually come from the egg only. The sperm's mitochondria enter the egg but do not contribute genetic information to the embryo. Instead, paternal mitochondria are marked with ubiquitin to select them for later destruction inside the embryo. The egg cell contains relatively few mitochondria, but it is these mitochondria that survive and divide to populate the cells of the adult organism. Mitochondria are, therefore, in most cases inherited only from mothers, a pattern known as maternal inheritance. This mode is seen in most organisms including all animals. However, mitochondria in some species can sometimes be inherited paternally. This is the norm among certain coniferous plants, although not in pine trees and yew trees. It has been suggested that it occurs at a very low level in humans. There is a recent suggestion mitochondria that shorten male lifespan stay in the system because mitochondria are inherited only through the mother. By contrast natural selection weeds out mitochondria that reduce female survival as such mitochondria are less likely to be passed on to the next generation. Therefore it is suggested human females and female animals tend to live longer than males. The authors claim this is a partial explanation.

Uniparental inheritance leads to little opportunity for genetic recombination between different lineages of mitochondria, although a single mitochondrion can contain 2–10 copies of its DNA. For this reason, mitochondrial DNA usually is thought to reproduce by binary fission. What recombination does take place maintains genetic integrity rather than maintaining diversity. However, there are studies showing evidence of recombination in mitochondrial DNA. It is clear that the enzymes necessary for recombination are present in mammalian cells. Further, evidence suggests that animal mitochondria can undergo recombination. The data are a bit more controversial in humans, although indirect evidence of recombination exists. If recombination does not occur, the whole mitochondrial DNA sequence represents a single haplotype, which makes it useful for studying the evolutionary history of populations.

Read more about this topic:  Mitochondrion

Famous quotes containing the word inheritance:

    Late in the afternoon we passed a man on the shore fishing with a long birch pole.... The characteristics and pursuits of various ages and races of men are always existing in epitome in every neighborhood. The pleasures of my earliest youth have become the inheritance of other men. This man is still a fisher, and belongs to an era in which I myself have lived.
    Henry David Thoreau (1817–1862)