Structure
Formally, Minkowski space is a four-dimensional real vector space equipped with a nondegenerate, symmetric bilinear form with signature (−,+,+,+) (Some may also prefer the alternative signature (+,−,−,−); in general, mathematicians and general relativists prefer the former while particle physicists tend to use the latter.) In other words, Minkowski space is a pseudo-Euclidean space with n = 4 and n − k = 1 (in a broader definition any n > 1 is allowed). Elements of Minkowski space are called events or four-vectors. Minkowski space is often denoted R1,3 to emphasize the signature, although it is also denoted M4 or simply M. It is perhaps the simplest example of a pseudo-Riemannian manifold.
Read more about this topic: Minkowski Space
Famous quotes containing the word structure:
“... the structure of a page of good prose is, analyzed logically, not something frozen but the vibrating of a bridge, which changes with every step one takes on it.”
—Robert Musil (18801942)
“What is the structure of government that will best guard against the precipitate counsels and factious combinations for unjust purposes, without a sacrifice of the fundamental principle of republicanism?”
—James Madison (17511836)
“With sixty staring me in the face, I have developed inflammation of the sentence structure and definite hardening of the paragraphs.”
—James Thurber (18941961)