Metal Carbonyl - History

History

Initial experiments on the reaction of carbon monoxide with metals were carried out by Justus von Liebig in 1834. By passing carbon monoxide over molten potassium he prepared a substance having the empirical formula KCO, which he called Kohlenoxidkalium. As demonstrated later, the compound was not a metal carbonyl, but the potassium salt of ´hexahydroxy benzene and the potassium salt of dihydroxy acetylene

The synthesis of the first true heteroleptic metal carbonyl complex was performed by Paul Schützenberger in 1868 by passing chlorine and carbon monoxide over platinum black, where dicarbonyldichloroplatinum (Pt(CO)2Cl2) was formed.

Ludwig Mond, one of the founders of Imperial Chemical Industries, investigated in the 1890s with Carl Langer and Friedrich Quincke various processes for the recovery of chlorine which was lost in the Solvay process by nickel metals, oxides and salts. As part of their experiments the group treated nickel with carbon monoxide. They found that the resulting gas colored the gas flame of a burner in a greenish-yellowish color; when heated in a glass tube it formed a nickel mirror. The gas could be condensed to a colorless, water-clear liquid with a boiling point of 43 °C. Thus, Mond and his coworker had discovered the first pure, homoleptic metal carbonyl, nickel tetracarbonyl (Ni(CO)4). The unusual high volatility of the metal compound nickel tetracarbonyl led Kelvin with the statement that Mond had "given wings to the metals'.

The following year, Mond and Marcellin Berthelot independently discovered iron pentacarbonyl, which is produced by a similar procedure as nickel tetracarbonyl. Mond recognized the economic potential of this class of compounds, which he commercially used in the Mond process and financed more research on related compounds. Heinrich Hirtz and his colleague M. Dalton Cowap synthesized metal carbonyls of cobalt, molybdenum, ruthenium, and diiron nonacarbonyl. In 1906 James Dewar and H. O. Jones were able to determine the structure of Diiron nonacarbonyl, which is produced from iron pentacarbonyl by the action of sunlight. After Mond, who died in 1909, the chemistry of metal carbonyls fell for several years in oblivion. The BASF started in 1924 the industrial production of iron pentacarbonyl by a process which was developed by Alwin Mittasch. The iron pentacarbonyl was used for the production of high-purity iron, so-called carbonyl iron, and iron oxide pigment. Not until 1927 did A. Job and A. Cassal succeed in the preparation of chromium hexacarbonyl and tungsten hexacarbonyl, the first synthesis of other homoleptic metal carbonyls.

Walter Hieber played in the years following 1928 a decisive role in the development of metal carbonyl chemistry. He systematically investigated and discovered, among other things, the Hieber base reaction, the first known route to Metal carbonyl hydrides and synthetic pathways leading to metal carbonyls such as dirhenium decacarbonyl. Hieber, who was since 1934 the Director of the Institute of Inorganic Chemistry at the Technical University Munich published in four decades 249 papers on metal carbonyl chemistry.

Also in the 1930s Walter Reppe, an industrial chemist and later board member of the BASF, discovered a number of homogeneous catalytic processes, such as the hydrocarboxylation, in which olefins or alkynes react with carbon monoxide and water to form products such as unsaturated acids and their derivatives. In these reactions, for example, nickel carbonyl or cobalt carbonyls act as catalysts. Reppe also discovered the cyclotrimerization and tetramerization of acetylene and its derivatives to benzene and benzene derivatives with metal carbonyls as catalysts. BASF built in the 1960s a production facility for acrylic acid by the Reppe process, which was only superseded in 1996 by more modern methods based on the catalytic propylene oxidation.

For the rational design of new complexes the concept of the isolobal analogy has been found useful. Roald Hoffmann was awarded with the Nobel Prize in chemistry for the development of the concept. The concept describes metal carbonyl fragments of M(CO)n as parts of octahedral building blocks in analogy to the tetrahedral CH3-, CH2- or CH- fragments in organic chemistry. In example Dimanganese decacarbonyl is formed in terms of the isolobal analogy of two d7Mn(CO)5 fragments, that are isolobal to the methyl radical CH3•. These can in analogy to the combination of methyl radicals to Ethane combine to Dimanganese decacarbonyl. The presence of isolobal analog fragments does not mean that the desired structures can be synthezied. In his Nobel Prize lecture Hoffmann emphasized that the isolobal analogy is a useful but simple model, and in some cases does not lead to success.

The economic benefits of metal-catalysed carbonylations, e.g. Reppe chemistry and hydroformylation, led to growth of the area. Metal carbonyl compounds were discovered in the active sites of three naturally occurring enzymes.


Read more about this topic:  Metal Carbonyl

Famous quotes containing the word history:

    We said that the history of mankind depicts man; in the same way one can maintain that the history of science is science itself.
    Johann Wolfgang Von Goethe (1749–1832)

    It may be well to remember that the highest level of moral aspiration recorded in history was reached by a few ancient Jews—Micah, Isaiah, and the rest—who took no count whatever of what might not happen to them after death. It is not obvious to me why the same point should not by and by be reached by the Gentiles.
    Thomas Henry Huxley (1825–95)

    The history is always the same the product is always different and the history interests more than the product. More, that is, more. Yes. But if the product was not different the history which is the same would not be more interesting.
    Gertrude Stein (1874–1946)