Metal-halide Lamp - Ballasts

Ballasts

The electric arc in metal-halide lamps, as in all gas discharge lamps has a negative resistance property; meaning that as the current through the bulb increases, the voltage across it decreases. If the bulb is powered from a constant voltage source such as directly from the AC wiring, the current will increase until the bulb destroys itself; therefore, halide bulbs require electrical ballasts to limit the arc's current. There are two types:

Many fixtures use an inductive ballast similar to those used with fluorescent lamps. This consists of an iron-core inductor. The inductor presents an impedance to AC current. If the current through the lamp increases, the inductor reduces the voltage to keep the current limited.

Electronic ballasts are lighter and more compact. They consist of an electronic oscillator which generates a high frequency current to drive the lamp. Because they have lower resistive losses than an inductive ballast, they are more energy efficient. However, high-frequency operation does not increase lamp efficacy as for fluorescent lamps.

Pulse-start metal-halide bulbs don't contain a starting electrode which strikes the arc, and require an ignitor to generate a high-voltage (1–5 kV on cold strike, over 30 kV on hot restrike) pulse to start the arc. Electronic ballasts include the igniter circuit in one package. American National Standards Institute (ANSI) lamp-ballast system standards establish parameters for all metal-halide components (with the exception of some newer products).

Read more about this topic:  Metal-halide Lamp