Mental Rotation - Notable Research

Notable Research

Roger Shepard and Jacqueline Metzler (1971) originally discovered this phenomenon. Their research showed that the reaction time for participants to decide if the pair of items matched or not was linearly proportional to the angle of rotation from the original position. That is, the more an object has been rotated from the original, the longer it takes an individual to determine if the 2 images are of the same object or enantiomorphs (Sternberg 247). Shortly afterwards, Robert Sekuler and David Nash (1972) demonstrated that a pair of mental transformations, size scaling and rotation, could be carried out in parallel.

In further research, Shepard and Cooper (1982) have proposed the concept of a "Mental Imagery" facility, which is responsible for the ability to mentally rotate visual forms. Additionally, it has been found it does not matter on which axis an object is rotated, but rather the degree to which it is rotated that has the most significant effect on response time. So rotations within the depth plane (i.e., 2D rotations) and rotations in depth (3D rotations) behave similarly. Thus, the matching requires more time as the amount of depth rotation increases, just as for within the depth plane.

In subsequent research, it has been found that response times increase for degraded stimuli and can decrease when participants are allowed to practice mentally rotating imagery (Sternberg 247). This research has been instrumental in showing how people use mental representations to navigate their environments.

Also, males tend to be slightly faster in mental rotation tasks than females. The ability to rotate mentally (measured in terms of decline in response time) peaks in young adult-hood, and declines thereafter.

Recent breakthroughs in nuclear magnetic resonance have allowed psychologists to discover what parts of the brain correspond to the use of this mental imagery function. Using Functional Magnetic Resonance Imaging, psychologists have shown that when participants are performing mental rotation tasks, there is activation in Brodmann's areas 7A and 7B, the middle frontal gyrus, extra-striate cortex, the hand somastosensory cortex, and frontal cortex (Cohen et al.).

Other recent research has centered on whether there might be multiple neural systems for the rotation of mental imagery. Parsons (1987) found that when participants were presented with line drawings of hands rather than Shepard and Metzler-like 3D blocks showed embodiment effects in which participants were slower to rotate hand stimuli in directions that were incompatible with the way human wrist and arm joints move. This finding suggested that the rotation of mental imagery was underlain by multiple neural systems: that is, (at least) a motoric/tactile one as well as a visual one. In a similar vein Amorim, Isableu and Jarraya (2006) have found that adding a cylindric "head" to Shepard and Metzler line drawings of 3D objects can create facilitation and inhibition effects as compared to standard Metzler-like stimuli, further suggesting that these neural systems rely on embodied cognition.

Studies of the development of mental rotation have revealed the emergence of this ability in male infants by 5 months of age (Moore & Johnson, 2008).

Read more about this topic:  Mental Rotation

Famous quotes containing the words notable and/or research:

    a notable prince that was called King John;
    And he ruled England with main and with might,
    For he did great wrong, and maintained little right.
    —Unknown. King John and the Abbot of Canterbury (l. 2–4)

    I did my research and decided I just had to live it.
    Karina O’Malley, U.S. sociologist and educator. As quoted in the Chronicle of Higher Education, p. A5 (September 16, 1992)