Menger Curvature - Integral Curvature Rectifiability

Integral Curvature Rectifiability

Menger curvature can be used to give quantitative conditions for when sets in may be rectifiable. For a Borel measure on a Euclidean space define

  • A Borel set is rectifiable if, where denotes one-dimensional Hausdorff measure restricted to the set .

The basic intuition behind the result is that Menger curvature measures how straight a given triple of points are (the smaller is, the closer x,y, and z are to being collinear), and this integral quantity being finite is saying that the set E is flat on most small scales. In particular, if the power in the integral is larger, our set is smoother than just being rectifiable

  • Let, be a homeomorphism and . Then if .
  • If where, and, then is rectifiable in the sense that there are countably many curves such that . The result is not true for, and for .:

In the opposite direction, there is a result of Peter Jones:

  • If, and is rectifiable. Then there is a positive Radon measure supported on satisfying for all and such that (in particular, this measure is the Frostman measure associated to E). Moreover, if for some constant C and all and r>0, then . This last result follows from the Analyst's Traveling Salesman Theorem.

Analogous results hold in general metric spaces:

Read more about this topic:  Menger Curvature

Famous quotes containing the word integral:

    Self-centeredness is a natural outgrowth of one of the toddler’s major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, what’s his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of him—an integral piece—is being torn from him.
    Lawrence Balter (20th century)