Menger Curvature - Integral Curvature Rectifiability

Integral Curvature Rectifiability

Menger curvature can be used to give quantitative conditions for when sets in may be rectifiable. For a Borel measure on a Euclidean space define

  • A Borel set is rectifiable if, where denotes one-dimensional Hausdorff measure restricted to the set .

The basic intuition behind the result is that Menger curvature measures how straight a given triple of points are (the smaller is, the closer x,y, and z are to being collinear), and this integral quantity being finite is saying that the set E is flat on most small scales. In particular, if the power in the integral is larger, our set is smoother than just being rectifiable

  • Let, be a homeomorphism and . Then if .
  • If where, and, then is rectifiable in the sense that there are countably many curves such that . The result is not true for, and for .:

In the opposite direction, there is a result of Peter Jones:

  • If, and is rectifiable. Then there is a positive Radon measure supported on satisfying for all and such that (in particular, this measure is the Frostman measure associated to E). Moreover, if for some constant C and all and r>0, then . This last result follows from the Analyst's Traveling Salesman Theorem.

Analogous results hold in general metric spaces:

Read more about this topic:  Menger Curvature

Famous quotes containing the word integral:

    ... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.
    Angelina Grimké (1805–1879)